CMS for Web: Clever
auswahlen, effizient
gestalten, skalieren

Category: Online-Marketing
geschrieben von Tobias Hager | 5. Februar 2026

I

&
| M

J

ok

v

CMS fur Web: Clever
auswahlen, effizient
gestalten, skalieren

Du willst eine Website bauen, die nicht nur gut aussieht, sondern auch
skaliert, performt und sich nicht beim ersten Traffic-Peak selbst zerlegt?
Dann vergiss Wix, Jimdo und andere Click’n’Drag-Spielplatze — du brauchst ein
CMS, das mehr kann als hibsche Templates. In diesem Artikel zerlegen wir den
CMS-Markt technisch, strategisch und gnadenlos ehrlich. Kein Buzzword-


https://404.marketing/bestes-cms-fuer-skalierbare-websites-2024/
https://404.marketing/bestes-cms-fuer-skalierbare-websites-2024/
https://404.marketing/bestes-cms-fuer-skalierbare-websites-2024/

Geblubber, kein Agentur-Bullshit — nur knallharte Fakten, klare Empfehlungen
und ein Fahrplan fiur dein nachstes digitales Projekt.

e Was ein Content-Management-System (CMS) wirklich leisten muss — 2024 und
daruber hinaus

e Die wichtigsten CMS-Typen und ihre technischen Unterschiede

e Wie du das richtige CMS fur dein Projekt auswahlst — inklusive
Entscheidungsmatrix

e Headless CMS vs. klassische Monolithen: Was wirklich skalierbar ist

e Technische SEO, Performance und Sicherheit im CMS-Kontext

e Warum viele populare CMS-Systeme deine Skalierung aktiv sabotieren

Die besten Open-Source-CMS fur Entwickler und Performance-Freaks

Enterprise-CMS: Wann du sie brauchst — und wann sie dich ruinieren

Unsere Top-Empfehlungen fir unterschiedliche Anwendungsfalle

Checkliste: So testest du dein CMS auf Skalierbarkeit und technisches

Potenzial

Was ein CMS leisten muss: Mehr
als nur Inhalte verwalten

Ein Content-Management-System (CMS) soll Inhalte verwalten — klar. Aber wenn
das schon alles ist, konnen wir auch Word-Dokumente auf Dropbox teilen.
Moderne CMS mussen mehr koénnen: Sie missen skalieren, sicher sein, sich in
moderne Tech-Stacks integrieren lassen, APIs anbieten, Multichannel-fahig
sein, und — ganz wichtig — technische SEO nicht sabotieren. Wer heute ein CMS
auswahlt, entscheidet damit auch Uber die Zukunftsfahigkeit seines gesamten
Online-Auftritts.

Die Zeiten, in denen ein CMS einfach nur ein Backend mit WYSIWYG-Editor war,
sind vorbei. Heute reden wir uUber RESTful APIs, GraphQL, statische
Generierung, Jamstack-Architekturen, serverseitiges Rendering, Integrationen
mit CI/CD-Pipelines und Deployment-Automatisierung. Klingt nach
Entwicklerzeug? Ist es auch. Denn ein CMS ist heute Teil der Software-
Architektur — nicht nur ein Redaktionswerkzeug.

Das bedeutet: Wer sein CMS auf ,einfach zu bedienen” reduziert, bremst sich
selbst aus. Klar, Usability fur Redakteure ist wichtig. Aber noch wichtiger
ist die Frage: Wie performant ist die Auslieferung? Wie sauber ist der
technische Unterbau? Wie sicher ist das System bei steigender Nutzerzahl? Wie
flexibel ist die Datenstruktur? Und wie gut lasst sich das CMS in ein
modernes Okosystem integrieren?

Ein gutes CMS muss nicht alles koénnen — aber das, was es kann, muss es
richtig machen. Und dazu gehort: API-Zuganglichkeit, Cache-Strategien,
Headless-Fahigkeit, saubere Trennung von Inhalt und Prasentation,
Versionierung, Multilingual-Support, Rechte- und Rollenmanagement sowie
vollstandige Kontrolle lber den ausgelieferten Code.



CMS-Typen 1im Vergleich:
Monolithisch, Headless, Hybrid

Wer ein CMS auswahlt, sollte zuerst verstehen, welche Arten es gibt — und wie
sie sich technisch unterscheiden. Denn nicht jeder braucht WordPress, nicht
jeder kann mit Typo3 umgehen, und Headless ist nicht automatisch besser. Es
kommt auf das Projekt, das Team und die Anforderungen an.

Monolithische CMS wie WordPress, Joomla oder Typo3 bringen Backend, Frontend
und Datenbank in einem Paket. Vorteil: schnelle Einrichtung, viele Plugins,
groBe Community. Nachteil: Technisch schwerfallig, oft unsicher, schwer
skalierbar, unflexibel bei Sonderanforderungen.

Headless CMS wie Contentful, Strapi oder Sanity trennen Inhalt und
Prasentation vollstandig. Sie liefern Inhalte uUber APIs, die dann durch ein
separates Frontend (z. B. mit React, Vue oder Svelte) dargestellt werden.
Vorteil: maximale Flexibilitat, moderne Architekturen, ideal fir
Multichannel. Nachteil: Entwicklerteam notwendig, komplexere Infrastruktur.

Hybrid-CMS wie Directus, Storyblok oder Kentico kombinieren beide Ansatze.
Sie bieten ein visuelles Interface fur Redakteure, aber auch Headless-
Fahigkeit uUber APIs. Vorteil: Usability + Flexibilitat. Nachteil: oft teuer
oder feature-kompromittiert.

Die Wahl des CMS-Typs hangt von folgenden Fragen ab:

e Wie viele Redakteure arbeiten mit dem System?

e Wie viele Kanale (Web, App, IoT, Print) sollen bespielt werden?
e Wie hoch ist die erwartete Traffic-Last?

e Gibt es ein Entwicklerteam — oder nur Agentur-Support?

e Wie wichtig sind Time-to-Market, Performance und SEOQ?

Headless CMS: Skalierbarkeit,
Performance, API-First

Headless CMS sind nicht der neue Hype — sie sind die Antwort auf alles, was
klassische CMS Uber Jahre falsch gemacht haben. Statt HTML aus Templates zu
rendern, liefern Headless-Systeme Inhalte als JSON lber REST oder GraphQL
aus. Und das macht sie verdammt machtig.

Warum? Weil du damit die komplette Kontrolle Uber deine Frontend-Architektur
hast. Du kannst Inhalte in einer React-App, einer statischen Gatsby-Seite,
einer mobilen App oder auf einem Smart-TV ausspielen — alles aus einem
einzigen CMS. Das ist Multichannel done right.

Zudem sind Headless CMS besser skalierbar. Sie entkoppeln die
Inhaltsverwaltung vom Rendering-Prozess. Das bedeutet: keine Template-



Engines, keine serverseitigen Bottlenecks, keine PHP-Abhangigkeiten.
Stattdessen: CDN-Auslieferung, statisches Pre-Rendering, Edge-Caching.
Willkommen im Performance-Himmel.

Wichtig ist: Headless CMS sind keine Plug-and-Play-Losungen. Sie erfordern
ein Entwicklerteam, das Frontends bauen kann. Wer glaubt, ein Headless CMS
sei ,einfacher”, hat das Konzept nicht verstanden. Der Vorteil liegt in der
langfristigen Skalierbarkeit, nicht in der initialen Einrichtung.

Technisch gesehen liefern Headless CMS folgende Features:

e API-Zugriff auf alle Inhalte (REST, GraphQL)
e Webhook-Integrationen fir CI/CD-Workflows

e Versionierung und Draft-Publishing

e Flexible Content-Modelle (JSON-basiert)

e Webhooks flr automatisierte Deployments

SEQ, Performance, Sicherheit:
Wie dein CMS dich ruilnieren
kann

Viele CMS sind SEO-Killer. Punkt. WordPress zum Beispiel liefert
standardmaBig unstrukturierte HTML-Ausgabe, erzeugt Duplicate Content durch
Archive, Tags und Kategorien, und blaht die Seite mit JavaScript- und CSS-
Mull auf. Klar, man kann mit Plugins nachbessern — aber das ist
Symptombehandlung, keine LOsung.

Ein SEO-taugliches CMS muss dir erlauben, die volle Kontrolle uber Meta-Tags,
Canonical-URLs, hreflang, strukturierte Daten, Ladezeiten und HTML-Struktur
zu haben. Und das ohne Plugin-0Orgie. Wenn du das nicht bekommst — weg damit.

Performance ist ebenfalls ein Dealbreaker. Wenn dein CMS 2.000 ms braucht, um
einen Request zu beantworten, ist der Drops gelutscht. Ein gutes CMS muss
Caching (Server + Client), Lazy Loading, Komprimierung, HTTP/2 und CDN-
Integration nativ unterstitzen — oder zumindest zulassen.

Sicherheit? Viele populare CMS sind Sicherheitsalbtraume. WordPress lebt von
der Hoffnung, dass Hacker zu faul sind, die nachste Zero-Day-Licke zu nutzen.
Headless CMS sind hier oft im Vorteil, weil sie keine Templates rendern und
keine Logik im Frontend haben. Aber auch hier gilt: Wer die API offen ins Web
stellt, ohne Authentifizierung oder Rate Limiting, hat nichts verstanden.

Kurz: Dein CMS entscheidet, ob deine Seite rankt, schnell ladt und nicht uber
Nacht gehackt wird. Wahl es mit Bedacht — oder zahl spater mit Sichtbarkeit,
Ladezeit und Reputationsschaden.



Welche CMS fur welche Zwecke?
Unsere Empfehlungen

Hier kommt das, worauf alle gewartet haben: konkrete Empfehlungen. Kein
Geschwurbel, keine Sponsoring-Influence — nur ehrliche Technik-Tipps von
Leuten, die das wirklich bauen (und kaputtgehen sehen).

e Kleine Websites / Blogs: Statamic, Ghost oder Astro (mit Markdown +
Static Site Generator) — SEO-freundlich, performant, minimalistisch.

e Corporate Sites mit Redakteursteam: Storyblok oder Directus — Hybrid-
Systeme mit guter Usability und API-Zugriff.

e Developer-getriebene Plattformen: Strapi oder Sanity — Headless,
flexibel, gut dokumentiert, CI/CD-ready.

e E-Commerce mit CMS-Integration: Kombination aus Shopify (Headless Mode)
+ Contentful oder Prismic — Commerce + Content richtig getrennt.

e Enterprise-Level mit Governance: Kentico, Magnolia oder Adobe Experience
Manager — teuer, aber machtig. Nur sinnvoll mit dediziertem Dev- und
DevOps-Team.

Vermeide bitte: Joomla (veraltet), Typo3 (Overkill fir 95 % der Projekte),
WordPress (nur mit massiven Anpassungen sinnvoll), Jimdo/Wix/Weebly
(Spielzeug).

Checkliste: Dein CMS auf
technisches Potenzial prufen

Bevor du ein CMS auswahlst, stell sicher, dass es diese Punkte erfillt. Wenn
nicht — weitersuchen.

. Unterstutzt Headless oder hybride Ausspielung?

Ist REST oder GraphQL nativ verfugbar?

Gibt es ein Rechtemanagement fir Redakteure?

Lasst sich das CMS in CI/CD integrieren?

. Kann ich Deployments automatisieren?

Wie sieht die Performance unter Last aus (TTFB, Caching)?
Kann ich strukturierte Daten und Meta-Infos manuell setzen?

. Wie ist der Support fur Multilingual-Content?

Wie sicher ist das System (OWASP, Auth, API-Ratenbegrenzung)?
Wie sauber ist der ausgelieferte HTML-Code?

Fazit: CMS 1ist

SO OVWooNOOUILE, WN B

=



Architekturfrage, nicht
Toolentscheidung

Ein CMS ist keine Website-Baukastenwahl. Es ist eine Architekturentscheidung,
die uUber SEO, Performance, Skalierbarkeit und Developer-Happiness
entscheidet. Wer hier auf das falsche Pferd setzt, zahlt spater mit
technischen Schulden, Redesigns und verlorener Sichtbarkeit.

Wahle dein CMS nicht nach Marketingsprech, sondern nach technischer Substanz.
Frag dich nicht “Was ist beliebt?”, sondern “Was ist wartbar, sicher,
performant und zukunftsfahig?” Und wenn dir eine Agentur WordPress empfiehlt,
ohne dein Projekt zu kennen — lauf. Schnell.



