CMS for Website: Clever
auswahlen, smart wachsen

lassen

Category: Online-Marketing
geschrieben von Tobias Hager | 5. Februar 2026

https:ﬁ'www.googre com/

=49 cf-80 o 00-108 (
A B-4
o'l
Field Data e
C aish Wilals assessmMer .-
l' ong n'lrI Vila —) '
3 First Input &
1.6 ™
Fi ¢ Contentful paint (FCP) £ .
@ Firs
a’ »n D o
e Shulft l
e eerpglative LIS
188 @§ Cumi
Sint (LCP) A
tentful Pain
Largest Con
|:| Show origin guimmary

CMS fur Website: Clever
auswahlen, smart wachsen

lassen

Deine Website ist kein Hobbyprojekt. Sie ist dein digitales Hauptquartier,
dein 24/7-Vertriebler, dein Markenmotor — und sie steht oder fallt mit dem
Content-Management-System, das du auswahlst. Wer hier schludert, zahlt spater
doppelt: mit Ladezeiten, Sicherheitslicken und einem Redaktionschaos, das
selbst Kafka uUberfordert hatte. In diesem Artikel zeigen wir dir, wie du das

https://404.marketing/bestes-cms-websites-2024-auswaehlen/
https://404.marketing/bestes-cms-websites-2024-auswaehlen/
https://404.marketing/bestes-cms-websites-2024-auswaehlen/

richtige CMS auswahlst, was du bei Skalierung und SEO beachten musst — und
warum “Open Source” nicht automatisch “gratis” bedeutet.

e Was ein CMS wirklich ist — jenseits des WordPress-Hypes

e Welche CMS-Optionen es gibt und wie sie sich technisch unterscheiden

e Warum die Wahl des CMS deine Skalierungsfahigkeit bestimmt

e SEO, Performance, Sicherheit: Was dein CMS koénnen muss (und was nicht)
e Headless CMS vs. monolithische Systeme — ein technischer Reality-Check
e Warum du Templates, Plugins und Themes kritisch hinterfragen solltest
e Welche CMS du 2024 komplett meiden solltest — und warum

e Checkliste: So findest du das perfekte CMS fur deinen Use Case

Was 1st ein CMS? Und warum
dein Tech-Stack davon abhangt

Ein CMS (Content Management System) ist die Software, mit der du Inhalte auf
deiner Website erstellst, verwaltest und veroffentlichst — ohne jedes Mal
deinen Entwickler anrufen zu missen. Klingt simpel, ist aber die
technologische Basis deiner gesamten Website-Architektur. Ob du Inhalte per
Drag & Drop baust oder Markdown in ein Git-Repo schiebst: Dein CMS
entscheidet Uber deine Workflows, dein Deployment, deine Skalierung und deine
SEO-Performance.

Die popularsten CMS wie WordPress, TYPO3 oder Joomla sind sogenannte
monolithische Systeme. Das heillt: Backend, Frontend, Datenbank und Admin-
Oberflache sind eng miteinander verzahnt. Das ist bequem — aber nicht
besonders flexibel. Moderne Systeme gehen daher in Richtung Headless CMS:
Content wird getrennt vom Frontend gespeichert und lber APIs ausgeliefert.
Das erlaubt mehr Freiheit in der Gestaltung, bessere Performance und eine
sauberere Trennung von Code und Inhalt.

Die Wahl des CMS ist keine Designfrage, sondern eine strategische
Architekturentscheidung. Sie betrifft deine Hosting-Infrastruktur, deine
Entwickler-Ressourcen, deine Content-Workflows und deine langfristige
Skalierbarkeit. Und trotzdem wahlen viele Unternehmen ihr CMS nach
Bauchgefuhl (“Das hat der Freelancer empfohlen”) oder weil es “kostenlos”
ist. Spoiler: Nichts ist kostenlos, vor allem nicht schlechte Entscheidungen.

Ein gutes CMS muss mehr konnen als nur Texte verwalten. Es muss performant
sein, sicher, skalierbar — und es muss mit deinem Tech-Stack harmonieren.
Wenn du auf React oder Vue setzt, ist ein WordPress-Theme moglicherweise die
falsche Wahl. Wenn du Skalierung in Richtung Mobile App oder Multichannel-
Marketing planst, brauchst du API-Flexibilitat. Und wenn du SEO ernst meinst,
musst du wissen, wie dein CMS mit Metadaten, URL-Strukturen und Canonicals
umgeht.

Headless CMS vs. klassisch:
Der Architekturkampf der
Zukunft

Headless CMS sind der neue heilRe Scheil — zurecht. Sie trennen Inhalt von
Darstellung, liefern Content via REST- oder GraphQL-API aus und lassen dir
vollige Freiheit im Frontend. Du willst dein Frontend in Next.js bauen, deine
App per React Native ausliefern und gleichzeitig Inhalte an den Voice
Assistant deiner Kunden schicken? Dann brauchst du Headless.

Der Klassiker — WordPress, TYP03, Joomla — funktioniert nach dem
monolithischen Prinzip. Alles in einem System, alles aus einem Guss. Fur
viele Use Cases reicht das aus: kleine Websites, Blogs, Redaktionssysteme
ohne technisches Know-how. Aber wenn deine Anforderungen wachsen —
Multilingualitat, Performance, App-Anbindung, dynamische Inhalte — stoBt der
Monolith schnell an seine Grenzen.

Technisch ist Headless kein Allheilmittel. Es bringt Komplexitat mit sich: Du
brauchst ein eigenes Frontend, eigene Hosting-Infrastruktur, CI/CD-Pipelines
und ein Entwicklerteam, das APIs versteht. Dafir bekommst du maximale
Flexibilitat, saubere Architekturen und eine klare Trennung von Code und
Content. Das ist Gold wert — vor allem, wenn du skalieren willst.

Ein gern ubersehener Aspekt: SEO. In klassischen CMS ist SEO oft “out of the
box” integriert — mit Plugins, die Metadaten, Sitemaps und Canonicals regeln.
Bei Headless ist das deine Verantwortung. Du musst sicherstellen, dass dein
Frontend SEO-ready ist, dass Server-Side Rendering funktioniert und dass
Google deinen Content Uberhaupt sieht. Wer hier schlampig arbeitet, verliert
Sichtbarkeit — egal, wie gut der Content ist.

CMS und SEO: Warum dein System
uber Rankings entscheidet

Technisches SEO beginnt nicht bei der Optimierung, sondern bei der
Systemwahl. Ein CMS, das deine URLs verhunzt, Canonicals falsch setzt oder
keine saubere Sitemap erzeugt, ist ein SEO-Problem — kein Tool-Problem. Und
davon gibt es viele. Wer SEO ernst meint, muss beim CMS auf folgende
Funktionen achten:

e Saubere URL-Strukturen ohne kryptische Parameter oder Session-IDs
e Individuell anpassbare Meta-Tags, Titles und Descriptions

e Native Unterstutzung fur hreflang-Tags und Multilingualitat

e Automatisch generierte, aber bearbeitbare XML-Sitemaps

e Canonical-Tag-Steuerung pro Seite

e Server-Side Rendering oder Pre-Rendering bei JavaScript-basierten

Frontends

Viele CMS liefern das — aber nur mit Plugins. Und genau da wird’s gefahrlich.
Plugins verlangern deine Ladezeiten, machen dich abhangig von
Drittentwicklern und schaffen Sicherheitsliicken. Jedes Plugin ist eine
potenzielle Schwachstelle — funktional wie sicherheitstechnisch. Und wenn
dein SEO-Plugin nach einem Update plotzlich Canonicals falsch setzt,
verlierst du Rankings, bevor du es merkst.

Ein CMS muss also SEO nicht nur ermoéglichen, sondern kontrollierbar machen.
Du brauchst Zugriff auf den HTML-Head, auf Robots-Header, auf Redirects und
auf die Performance deiner Ressourcen. Alles andere ist Glicksspiel — und das
verlierst du gegen deine besser aufgestellten Wettbewerber.

Wachstum und Skalierung: Was
dein CMS leisten konnen muss

Du startest mit zehn Seiten — klar. Aber was ist, wenn du morgen 1.000 Seiten
brauchst? Oder 50.0007 Was ist mit Multisite-Strukturen, internationalem
Rollout, verschiedenen Redakteursrollen, automatisierten Content-Pipelines?
Die Antwort findest du nicht in der Feature-Liste, sondern in der Architektur
des CMS.

Ein skalierbares CMS muss drei Dinge beherrschen: Rechte- und Rollenkonzepte,
Content-Modeling und API-Zuganglichkeit. Redakteure missen ohne Entwickler
Inhalte pflegen kdnnen, aber nicht alles sehen oder andern. Deine Inhalte
mussen strukturiert vorliegen — als Content Types, nicht als “freier Text”.
Und dein System muss Daten ausspielen kdénnen — an Web, App, Newsletter,
Print, Social.

Typische Killerkriterien fir schlechte Skalierung:

e Kein Versioning oder Workflow-Management

Fehlende Trennung zwischen Staging und Live-System

Keine Moglichkeit, Inhalte in mehreren Sprachen zu verwalten
Unflexible Templates, die jeden Relaunch zum Alptraum machen
Keine API oder nur unzureichende Dokumentation

Ein CMS, das heute noch performant wirkt, kann morgen zum Klotz am Bein
werden. Deshalb: Denk in Szenarien, nicht in Ist-Zustanden. Wenn Wachstum
Teil deiner Strategie ist — und das sollte es sein — muss dein CMS mitziehen.
Sonst baust du neu. Und das wird teuer.

Checkliste: So findest du das

richtige CMS fur deinen Use
Case

Du willst kein CMS von der Stange, du willst das richtige. Hier ist eine
knallharte Checkliste, mit der du dein System evaluierst — technisch,
strategisch, realistisch.

1. Use Case definieren: Was willst du wirklich? Blog, Shop, Plattform? Wie
viele Seiten, wie viele Redakteure, welche Kanale?

2. Tech-Stack analysieren: Was nutzt dein Entwicklerteam? PHP, Node.js,
React, Vue? Muss das CMS dazu passen — oder umgekehrt?

3. SEO-Anforderungen prifen: Kann das System URLs, Meta, Canonicals,
hreflang, Redirects, Sitemaps?

4. Performance einplanen: Ist das System leichtgewichtig? Gibt es Caching,
SSR oder CDN-Integration?

5. APIs und Headless-Fahigkeit: Kannst du Inhalte flexibel ausspielen?
REST, GraphQL, Webhooks?

6. Editor UX testen: Konnen Redakteure ohne Schulung arbeiten — oder
brauchst du einen Diplomkurs?

7. Sicherheit & Wartung: Gibt es regelmaRige Updates? Wie groR ist die
Community? Wie viele offene CVEs?

8. Zukunftsfahigkeit: Wird das System aktiv weiterentwickelt? Gibt's eine
Roadmap? Funktioniert der Support?

Fazit: CMS-Auswahl 1ist kein
Bauchgefuhl, sondern
Architekturentscheidung

Dein CMS ist kein Werkzeug — es ist das Fundament deiner digitalen Prasenz.
Wer das falsche wahlt, zahlt spater mit schlechter Performance, SEO-
Verlusten, Redaktionsfrust und teuren Relaunches. Die Auswahl muss
strategisch, technisch fundiert und zukunftsorientiert erfolgen. Ein gutes
CMS ist nicht das mit den meisten Features, sondern das mit der besten
Architektur fur deinen Use Case.

2024 gibt es keine Ausreden mehr. Wer heute noch blind auf “das hat sich
bewahrt” setzt, wird morgen von der Konkurrenz uberholt — technisch,
inhaltlich, organisch. Die Zukunft gehdrt denen, die ihre Systeme verstehen.
Nicht denen, die auf Templates hoffen. Denk in APIs, nicht in Plugins. Denk
in Skalierung, nicht in Themes. Und vor allem: Denk voraus.

