
Checkmarx:
Sicherheitslücken clever
erkennen und schließen
Category: Online-Marketing
geschrieben von Tobias Hager | 7. Februar 2026

Checkmarx:
Sicherheitslücken clever
erkennen und schließen
Dein Code ist kein geheimer Tempel. Er ist eine Einladung für jeden halbwegs
motivierten Angreifer, mal eben reinzuschauen. Und wenn du denkst, dein Dev-
Team hat das schon im Griff – sorry, aber das hatten die Entwickler von
Equifax, SolarWinds und MOVEit auch. Willkommen in der gnadenlosen Realität
von Application Security 2025. Wo du ohne Tools wie Checkmarx nicht mehr über
Sicherheit sprichst, sondern über Schadensbegrenzung. Dieser Artikel zeigt
dir, wie du mit Checkmarx Sicherheitslücken nicht nur findest, sondern
systematisch eliminierst – bevor sie dich Millionen kosten.

https://404.marketing/checkmarx-sicherheitsluecken-erkennen-beheben/
https://404.marketing/checkmarx-sicherheitsluecken-erkennen-beheben/
https://404.marketing/checkmarx-sicherheitsluecken-erkennen-beheben/


Was Checkmarx ist und warum es im Bereich Application Security führend
ist
Wie Checkmarx Static Application Security Testing (SAST) funktioniert
Welche Rolle Software Composition Analysis (SCA) bei Open Source spielt
Wie du mit Checkmarx CI/CD-Pipelines absicherst – ohne Devs zu nerven
Warum Shift Left Security kein Buzzword, sondern Überlebensstrategie ist
Welche Integrationen mit GitHub, GitLab, Jenkins & Co. wirklich zählen
Wie Checkmarx False Positives reduziert und deine Developer entlastet
Best Practices für die Einführung von Checkmarx in großen Dev-Teams
Typische Fehler beim Einsatz von SAST und SCA – und wie du sie
vermeidest
Warum ohne automatisierte Security-Tests deine DevOps-Pipeline ein
Risiko ist

Was ist Checkmarx? Der
Security-Scanner für
Entwickler – nicht für Träumer
Checkmarx ist ein führendes Tool im Bereich Application Security Testing
(AST), das sich auf die Identifikation, Analyse und Behebung von
Sicherheitslücken im Quellcode spezialisiert hat. Klingt nach einem weiteren
Security-Scanner? Nope. Checkmarx ist nicht einfach nur ein Tool für IT-
Sicherheitsabteilungen. Es ist eine Plattform, die direkt in den
Entwicklungsprozess integriert wird – tief, automatisiert und vor allem
developer-friendly.

Im Zentrum steht das sogenannte Static Application Security Testing (SAST),
bei dem der Quellcode statisch analysiert wird – also ohne ihn auszuführen.
Das bedeutet: Sicherheitslücken wie SQL-Injection, Cross-Site Scripting
(XSS), Command Injection oder Hardcoded Secrets werden erkannt, noch bevor
der Code überhaupt deployed wird. Und genau das macht Checkmarx so wertvoll.

Aber Checkmarx kann mehr. Mit Software Composition Analysis (SCA) analysiert
die Plattform zusätzlich deine verwendeten Open-Source-Komponenten auf
bekannte Schwachstellen (CVEs), Lizenzprobleme und Versionskonflikte. Damit
bekommst du nicht nur deinen eigenen Code unter Kontrolle, sondern auch den
Dschungel aus Third-Party-Bibliotheken – und das ist 2025 wichtiger denn je.

Die Plattform bietet zudem eine Reihe von Integrationen für CI/CD-Pipelines,
IDEs, Repositories und Ticketing-Systeme. Ob GitHub, GitLab, Jenkins oder
JIRA – Checkmarx lässt sich in deine bestehende DevOps-Infrastruktur
einbetten, ohne die Entwickler mit zusätzlichem Overhead zu belasten. Und
genau das ist der Unterschied zu vielen anderen Tools: Checkmarx denkt wie
ein Entwickler, nicht wie ein Auditor.

Kurz gesagt: Checkmarx ist nicht der Typ mit der roten Karte, der dich nach
dem Deployment zur Abnahme zwingt. Es ist der Coach, der dein Team während
der Entwicklung besser macht – kontinuierlich, automatisiert und immer auf



Augenhöhe mit der Realität moderner Softwareentwicklung.

Wie funktioniert SAST mit
Checkmarx? Sicherheitslücken
erkennen, bevor sie deployed
werden
Static Application Security Testing (SAST) ist der Kernbereich von Checkmarx
– und ja, das ist mehr als nur ein smarter Linter. Checkmarx analysiert
deinen Quellcode auf Muster, Flows und Kontexte, die auf sicherheitskritische
Schwächen hinweisen. Dabei geht es nicht nur um einfache Pattern-Erkennung,
sondern um tiefgehende Dataflow-Analysen, die nachvollziehen, wie Daten durch
deine Anwendung fließen.

Beispiel: Eine Benutzereingabe gelangt über ein Webformular in eine
Datenbankabfrage. Wenn diese Eingabe nicht korrekt validiert oder escaped
wird, ist das ein klassisches Beispiel für eine SQL-Injection. Checkmarx
erkennt solche Flows – inklusive aller Zwischenstationen, Variablen und
Methoden – und kann dir genau sagen, wo im Code das Problem beginnt und
endet. Und das funktioniert nicht nur in Java oder C#, sondern in über 25
Programmiersprachen inklusive JavaScript, TypeScript, Python, Go und Swift.

Die SAST-Engine von Checkmarx generiert dabei sogenannte “Query Results” mit
klaren Pfaden, die die Schwachstelle beschreiben. Diese Ergebnisse sind nicht
einfach nur Listen von Problemen, sondern nachvollziehbare Exploit-Chains.
Das spart Zeit – vor allem bei der Priorisierung und Behebung.

Ein weiteres Plus: Checkmarx bietet sogenannte „Custom Queries“, mit denen du
eigene Regeln definieren kannst. Du willst sicherstellen, dass kein
Entwickler jemals wieder ein Passwort im Klartext speichert? Schreib eine
Regel. Du willst interne APIs absichern oder Legacy-Code auf Compliance
prüfen? Kein Problem. Mit dem Checkmarx Query Language (CxQL) bekommst du ein
mächtiges Werkzeug zur Hand, mit dem du die Security-Policy deiner
Organisation direkt in den Quellcode bringst.

Und das Beste: Der Scan läuft automatisiert bei jedem Commit oder Pull
Request – integriert in deine CI/CD-Pipeline. Das bedeutet, dass
Sicherheitslücken nicht erst Monate später auffallen, sondern dort erkannt
werden, wo sie entstehen: beim Schreiben des Codes.

Software Composition Analysis:



Die Open-Source-Zeitbombe
entschärfen
Moderne Anwendungen bestehen nicht mehr zu 100 % aus eigenem Code. Zwischen
70 und 90 % sind heute Open Source – Bibliotheken, Frameworks, Helper-Tools.
Klingt effizient, ist aber ein Sicherheitsalptraum. Denn jede dieser
Komponenten kann bekannte Schwachstellen enthalten – sogenannte Common
Vulnerabilities and Exposures (CVEs). Und genau hier kommt die Software
Composition Analysis (SCA) von Checkmarx ins Spiel.

Checkmarx SCA scannt deine Abhängigkeiten – egal ob Maven, npm, pip oder
Gradle – und gleicht sie gegen eine ständig aktualisierte Datenbank von
Schwachstellen ab. Du bekommst eine Liste aller gefundenen CVEs, inklusive
Risikolevel, Exploitbarkeit, betroffener Version und – ganz wichtig –
Handlungsempfehlungen zur Behebung.

Das Ganze funktioniert nicht nur auf Package-Ebene, sondern auch transitive
Abhängigkeiten werden analysiert. Das heißt: Auch wenn du selbst kein
verwundbares Package eingebunden hast, aber ein verwendetes Modul wiederum
eine Schwachstelle mitbringt, wird das erkannt. Willkommen in der Realität
von Dependency Hell.

Checkmarx integriert sich direkt in dein Build-System und deine Repositories.
Du bekommst also keine Reports per E-Mail, die niemand liest, sondern echte
Alerts – automatisiert, in Echtzeit, direkt im Pull Request oder Merge
Request. Und das macht den Unterschied.

SCA ist damit nicht nur ein Compliance-Tool, sondern ein aktives
Verteidigungssystem gegen Supply-Chain-Angriffe. Denn wer heute blind Open
Source einsetzt, spielt russisches Roulette mit seinem Backend.

Shift Left Security: Warum
Sicherheit beim Commit beginnt
“Shift Left” ist kein Buzzword, sondern der Überlebensmodus moderner
Entwicklungsprozesse. Die Idee: Sicherheitsprüfungen finden so früh wie
möglich im Software Development Lifecycle (SDLC) statt – idealerweise beim
Schreiben des Codes. Und genau das ist die Philosophie hinter Checkmarx.

Früher galt: Erst entwickeln, dann testen, dann releasen – und irgendwo
dazwischen ein Security-Audit. Heute ist klar: Wer Sicherheitslücken erst
kurz vor dem Go-Live findet, hat verloren. Die Kosten für Fixes steigen
exponentiell mit jedem Schritt im SDLC. Ein Bug, der beim Coding gefixt wird,
kostet im Schnitt 1$. Derselbe Bug im Test 10$, im Deployment 100$, und wenn
er ausgenutzt wird? Dann sprechen wir über Millionen.

Checkmarx setzt genau hier an. Durch die Integration in IDEs wie VS Code,



IntelliJ oder Eclipse bekommen Entwickler direkt bei der Codeeingabe Feedback
zu potenziellen Sicherheitsproblemen. Kein separates Tool, keine
Kontextwechsel – einfach Inline-Warnungen wie bei einem guten Linter. Das
spart Zeit, Nerven und verhindert, dass unsauberer Code überhaupt committet
wird.

In der CI/CD-Pipeline übernimmt Checkmarx dann die Aufgabe des
automatisierten Gatekeepers. Jeder Commit, jeder Build, jeder Merge wird
gescannt. Wenn eine Schwachstelle gefunden wird, kann der Build blockiert
werden – je nach Policy. So wird Sicherheit zum integralen Bestandteil deiner
DevOps-Kultur, nicht zum nachgelagerten Pain Point.

Shift Left heißt: Sicherheit ist kein Bottleneck mehr, sondern Bestandteil
des Flows. Und Checkmarx liefert die Technologie, um diesen Shift nicht nur
zu predigen, sondern in der Praxis umzusetzen.

Best Practices für Checkmarx:
So bringst du dein Team auf
Sicherheitskurs
Checkmarx ist mächtig – aber nur so gut wie deine Implementierung. Wer das
Tool einfach “installiert” und erwartet, dass sich der Rest von selbst
regelt, wird enttäuscht. Hier sind die wichtigsten Best Practices, um
Checkmarx effektiv und nachhaltig in deine Organisation zu integrieren:

Security Champions etablieren1.
Wähle pro Team mindestens einen Entwickler aus, der sich tiefer mit
Application Security beschäftigt. Diese Champions sind Ansprechpartner,
Multiplikatoren und Brücken zwischen Security- und Dev-Teams.
CI/CD-Integration priorisieren2.
Checkmarx muss Teil eures Build-Prozesses sein. Jeder Commit, jeder
Merge – alles muss gescannt werden. Ohne Ausnahme.
Training und Awareness3.
Schulungen sind Pflicht. Deine Entwickler müssen wissen, was eine SQL-
Injection ist – und wie sie aussieht. Checkmarx liefert dazu integrierte
Schulungsmodule (Secure Coding Education).
False Positives minimieren4.
Nutze Custom Queries und Policies, um die Relevanz der Findings zu
erhöhen. Weniger Rauschen = mehr Akzeptanz.
KPIs definieren5.
Setze messbare Ziele: Anzahl gefixter Schwachstellen, durchschnittliche
Time-to-Fix, Policy-Compliance. Ohne Metriken keine Verbesserung.



Fazit: Mit Checkmarx
Sicherheitslücken schließen,
bevor sie teuer werden
Sicherheitslücken sind kein hypothetisches Risiko. Sie sind real, teuer und
permanent auf der Jagd nach deinem Code. Wer 2025 noch glaubt, dass ein
jährlicher Penetrationstest ausreicht, hat den Ernst der Lage nicht
verstanden. Moderne Softwareentwicklung braucht automatisierte,
kontinuierliche und tief integrierte Sicherheitslösungen. Und genau das
liefert Checkmarx.

Ob SAST, SCA oder Shift Left – Checkmarx bringt nicht nur Tools, sondern eine
Philosophie mit: Sicherheit ist ein Entwicklungsthema. Kein Audit, kein
Compliance-Report, kein nerviges Add-on. Sondern ein integraler Bestandteil
jeder Zeile Code. Wer heute noch ohne Security-Scans entwickelt, ist entweder
naiv oder fahrlässig. Deine Wahl.


