Checkmarx:
Sicherheitslucken clever
erkennen und schlielRen

Category: Online-Marketing
geschrieben von Tobias Hager | 7. Februar 2026

Checkmarx:
Sicherheitslucken clever
erkennen und schliefRen

Dein Code ist kein geheimer Tempel. Er ist eine Einladung fur jeden halbwegs
motivierten Angreifer, mal eben reinzuschauen. Und wenn du denkst, dein Dev-
Team hat das schon im Griff — sorry, aber das hatten die Entwickler von
Equifax, SolarWinds und MOVEit auch. Willkommen in der gnadenlosen Realitat
von Application Security 2025. Wo du ohne Tools wie Checkmarx nicht mehr Gber
Sicherheit sprichst, sondern Uber Schadensbegrenzung. Dieser Artikel zeigt
dir, wie du mit Checkmarx Sicherheitslicken nicht nur findest, sondern
systematisch eliminierst — bevor sie dich Millionen kosten.


https://404.marketing/checkmarx-sicherheitsluecken-erkennen-beheben/
https://404.marketing/checkmarx-sicherheitsluecken-erkennen-beheben/
https://404.marketing/checkmarx-sicherheitsluecken-erkennen-beheben/

e Was Checkmarx ist und warum es im Bereich Application Security flhrend
ist

e Wie Checkmarx Static Application Security Testing (SAST) funktioniert

e Welche Rolle Software Composition Analysis (SCA) bei Open Source spielt

e Wie du mit Checkmarx CI/CD-Pipelines absicherst — ohne Devs zu nerven

e Warum Shift Left Security kein Buzzword, sondern Uberlebensstrategie ist

e Welche Integrationen mit GitHub, GitLab, Jenkins & Co. wirklich zahlen

e Wie Checkmarx False Positives reduziert und deine Developer entlastet

e Best Practices fir die Einfuhrung von Checkmarx in grofen Dev-Teams

e Typische Fehler beim Einsatz von SAST und SCA — und wie du sie
vermeidest

e Warum ohne automatisierte Security-Tests deine DevOps-Pipeline ein
Risiko ist

Was 1st Checkmarx? Der

Security-Scanner fur
Entwickler — nicht fur Traumer

Checkmarx ist ein fihrendes Tool im Bereich Application Security Testing
(AST), das sich auf die Identifikation, Analyse und Behebung von
Sicherheitslicken im Quellcode spezialisiert hat. Klingt nach einem weiteren
Security-Scanner? Nope. Checkmarx ist nicht einfach nur ein Tool fur IT-
Sicherheitsabteilungen. Es ist eine Plattform, die direkt in den
Entwicklungsprozess integriert wird — tief, automatisiert und vor allem
developer-friendly.

Im Zentrum steht das sogenannte Static Application Security Testing (SAST),
bei dem der Quellcode statisch analysiert wird — also ohne ihn auszufihren.
Das bedeutet: Sicherheitslicken wie SQL-Injection, Cross-Site Scripting
(XSS), Command Injection oder Hardcoded Secrets werden erkannt, noch bevor
der Code Uberhaupt deployed wird. Und genau das macht Checkmarx so wertvoll.

Aber Checkmarx kann mehr. Mit Software Composition Analysis (SCA) analysiert
die Plattform zusatzlich deine verwendeten Open-Source-Komponenten auf

bekannte Schwachstellen (CVEs), Lizenzprobleme und Versionskonflikte. Damit
bekommst du nicht nur deinen eigenen Code unter Kontrolle, sondern auch den
Dschungel aus Third-Party-Bibliotheken — und das ist 2025 wichtiger denn je.

Die Plattform bietet zudem eine Reihe von Integrationen fir CI/CD-Pipelines,
IDEs, Repositories und Ticketing-Systeme. Ob GitHub, GitLab, Jenkins oder
JIRA — Checkmarx lasst sich in deine bestehende DevOps-Infrastruktur
einbetten, ohne die Entwickler mit zusatzlichem Overhead zu belasten. Und
genau das ist der Unterschied zu vielen anderen Tools: Checkmarx denkt wie
ein Entwickler, nicht wie ein Auditor.

Kurz gesagt: Checkmarx ist nicht der Typ mit der roten Karte, der dich nach
dem Deployment zur Abnahme zwingt. Es ist der Coach, der dein Team wahrend
der Entwicklung besser macht — kontinuierlich, automatisiert und immer auf



Augenhdhe mit der Realitat moderner Softwareentwicklung.

Wie funktioniert SAST mit
Checkmarx? Sicherheitslucken
erkennen, bevor sie deployed
werden

Static Application Security Testing (SAST) ist der Kernbereich von Checkmarx
— und ja, das ist mehr als nur ein smarter Linter. Checkmarx analysiert
deinen Quellcode auf Muster, Flows und Kontexte, die auf sicherheitskritische
Schwachen hinweisen. Dabei geht es nicht nur um einfache Pattern-Erkennung,
sondern um tiefgehende Dataflow-Analysen, die nachvollziehen, wie Daten durch
deine Anwendung flieRen.

Beispiel: Eine Benutzereingabe gelangt uUber ein Webformular in eine
Datenbankabfrage. Wenn diese Eingabe nicht korrekt validiert oder escaped
wird, ist das ein klassisches Beispiel fur eine SQL-Injection. Checkmarx
erkennt solche Flows — inklusive aller Zwischenstationen, Variablen und
Methoden — und kann dir genau sagen, wo im Code das Problem beginnt und
endet. Und das funktioniert nicht nur in Java oder C#, sondern in Uber 25
Programmiersprachen inklusive JavaScript, TypeScript, Python, Go und Swift.

Die SAST-Engine von Checkmarx generiert dabei sogenannte “Query Results” mit
klaren Pfaden, die die Schwachstelle beschreiben. Diese Ergebnisse sind nicht
einfach nur Listen von Problemen, sondern nachvollziehbare Exploit-Chains.
Das spart Zeit — vor allem bei der Priorisierung und Behebung.

Ein weiteres Plus: Checkmarx bietet sogenannte ,Custom Queries”, mit denen du
eigene Regeln definieren kannst. Du willst sicherstellen, dass kein
Entwickler jemals wieder ein Passwort im Klartext speichert? Schreib eine
Regel. Du willst interne APIs absichern oder Legacy-Code auf Compliance
prufen? Kein Problem. Mit dem Checkmarx Query Language (CxQL) bekommst du ein
machtiges Werkzeug zur Hand, mit dem du die Security-Policy deiner
Organisation direkt in den Quellcode bringst.

Und das Beste: Der Scan lauft automatisiert bei jedem Commit oder Pull
Request — integriert in deine CI/CD-Pipeline. Das bedeutet, dass
Sicherheitslicken nicht erst Monate spater auffallen, sondern dort erkannt
werden, wo sie entstehen: beim Schreiben des Codes.

Software Composition Analysis:



Die Open-Source-Zeitbombe
entscharfen

Moderne Anwendungen bestehen nicht mehr zu 100 % aus eigenem Code. Zwischen
70 und 90 % sind heute Open Source — Bibliotheken, Frameworks, Helper-Tools.
Klingt effizient, ist aber ein Sicherheitsalptraum. Denn jede dieser
Komponenten kann bekannte Schwachstellen enthalten — sogenannte Common
Vulnerabilities and Exposures (CVEs). Und genau hier kommt die Software
Composition Analysis (SCA) von Checkmarx ins Spiel.

Checkmarx SCA scannt deine Abhangigkeiten — egal ob Maven, npm, pip oder
Gradle — und gleicht sie gegen eine standig aktualisierte Datenbank von
Schwachstellen ab. Du bekommst eine Liste aller gefundenen CVEs, inklusive
Risikolevel, Exploitbarkeit, betroffener Version und — ganz wichtig —
Handlungsempfehlungen zur Behebung.

Das Ganze funktioniert nicht nur auf Package-Ebene, sondern auch transitive
Abhangigkeiten werden analysiert. Das heift: Auch wenn du selbst kein
verwundbares Package eingebunden hast, aber ein verwendetes Modul wiederum
eine Schwachstelle mitbringt, wird das erkannt. Willkommen in der Realitat
von Dependency Hell.

Checkmarx integriert sich direkt in dein Build-System und deine Repositories.
Du bekommst also keine Reports per E-Mail, die niemand liest, sondern echte
Alerts — automatisiert, in Echtzeit, direkt im Pull Request oder Merge
Request. Und das macht den Unterschied.

SCA ist damit nicht nur ein Compliance-Tool, sondern ein aktives
Verteidigungssystem gegen Supply-Chain-Angriffe. Denn wer heute blind Open
Source einsetzt, spielt russisches Roulette mit seinem Backend.

Shift Left Security: Warum
Sicherheit beim Commit beginnt

“Shift Left” ist kein Buzzword, sondern der Uberlebensmodus moderner
Entwicklungsprozesse. Die Idee: Sicherheitspriufungen finden so fruh wie
moglich im Software Development Lifecycle (SDLC) statt — idealerweise beim
Schreiben des Codes. Und genau das ist die Philosophie hinter Checkmarx.

Friher galt: Erst entwickeln, dann testen, dann releasen — und irgendwo
dazwischen ein Security-Audit. Heute ist klar: Wer Sicherheitslicken erst
kurz vor dem Go-Live findet, hat verloren. Die Kosten flir Fixes steigen
exponentiell mit jedem Schritt im SDLC. Ein Bug, der beim Coding gefixt wird,
kostet im Schnitt 1$. Derselbe Bug im Test 10$%$, im Deployment 100$%$, und wenn
er ausgenutzt wird? Dann sprechen wir uber Millionen.

Checkmarx setzt genau hier an. Durch die Integration in IDEs wie VS Code,



Intelli] oder Eclipse bekommen Entwickler direkt bei der Codeeingabe Feedback
zu potenziellen Sicherheitsproblemen. Kein separates Tool, keine
Kontextwechsel — einfach Inline-Warnungen wie bei einem guten Linter. Das
spart Zeit, Nerven und verhindert, dass unsauberer Code Uberhaupt committet
wird.

In der CI/CD-Pipeline ubernimmt Checkmarx dann die Aufgabe des
automatisierten Gatekeepers. Jeder Commit, jeder Build, jeder Merge wird
gescannt. Wenn eine Schwachstelle gefunden wird, kann der Build blockiert
werden — je nach Policy. So wird Sicherheit zum integralen Bestandteil deiner
DevOps-Kultur, nicht zum nachgelagerten Pain Point.

Shift Left heiBt: Sicherheit ist kein Bottleneck mehr, sondern Bestandteil
des Flows. Und Checkmarx liefert die Technologie, um diesen Shift nicht nur
zu predigen, sondern in der Praxis umzusetzen.

Best Practices fur Checkmarx:
So bringst du dein Team auf
Sicherheitskurs

Checkmarx ist machtig — aber nur so gut wie deine Implementierung. Wer das
Tool einfach “installiert” und erwartet, dass sich der Rest von selbst
regelt, wird enttauscht. Hier sind die wichtigsten Best Practices, um
Checkmarx effektiv und nachhaltig in deine Organisation zu integrieren:

1. Security Champions etablieren
Wahle pro Team mindestens einen Entwickler aus, der sich tiefer mit
Application Security beschaftigt. Diese Champions sind Ansprechpartner,
Multiplikatoren und Brucken zwischen Security- und Dev-Teams.

2. CI/CD-Integration priorisieren
Checkmarx muss Teil eures Build-Prozesses sein. Jeder Commit, jeder
Merge — alles muss gescannt werden. Ohne Ausnahme.

3. Training und Awareness
Schulungen sind Pflicht. Deine Entwickler missen wissen, was eine SQL-
Injection ist — und wie sie aussieht. Checkmarx liefert dazu integrierte
Schulungsmodule (Secure Coding Education).

4. False Positives minimieren
Nutze Custom Queries und Policies, um die Relevanz der Findings zu
erhohen. Weniger Rauschen = mehr Akzeptanz.

5. KPIs definieren
Setze messbare Ziele: Anzahl gefixter Schwachstellen, durchschnittliche
Time-to-Fix, Policy-Compliance. Ohne Metriken keine Verbesserung.



Fazit: Mit Checkmarx
Sicherheitslucken schlielSen,
bevor sie teuer werden

Sicherheitslicken sind kein hypothetisches Risiko. Sie sind real, teuer und
permanent auf der Jagd nach deinem Code. Wer 2025 noch glaubt, dass ein
jahrlicher Penetrationstest ausreicht, hat den Ernst der Lage nicht
verstanden. Moderne Softwareentwicklung braucht automatisierte,
kontinuierliche und tief integrierte Sicherheitsldsungen. Und genau das
liefert Checkmarx.

Ob SAST, SCA oder Shift Left — Checkmarx bringt nicht nur Tools, sondern eine
Philosophie mit: Sicherheit ist ein Entwicklungsthema. Kein Audit, kein
Compliance-Report, kein nerviges Add-on. Sondern ein integraler Bestandteil
jeder Zeile Code. Wer heute noch ohne Security-Scans entwickelt, ist entweder
naiv oder fahrlassig. Deine Wahl.



