CI/CD Pipeline Setup: So
lauft Automatisierung
wirklich ab

Category: Tools

geschrleben von Tob1as Hager | 14. August 2025

- ;@ -

L*? E _,,u

"
ﬂ! R

——as

CI/CD Pipeline Setup: So
lauft Automatisierung
wirklich ab

Du willst also endlich raus aus dem Steinzeitalter manueller Deployments und
lacherlich ineffizienter Release-Zyklen? Willkommen im Maschinenraum der
echten Automatisierung: CI/CD Pipelines. Hier trennt sich der DevOps-Spreu
vom Marketing-Weizen. Zeit flir einen tiefen Tauchgang, der nicht bei GitHub
Actions aufhort, sondern bei Infrastruktur als Code, YAML-Fetischismus, und
dem eiskalten Reality-Check, warum 90 Prozent der “Automatisierung” in
deutschen Unternehmen nichts anderes als Click-Play-Fake ist. Lies weiter,
wenn du wissen willst, wie CI/CD Pipelines wirklich funktionieren, warum sie
der Kern moderner Softwareentwicklung sind — und wieso deine Delivery erst


https://404.marketing/ci-cd-pipeline-setup-anleitung/
https://404.marketing/ci-cd-pipeline-setup-anleitung/
https://404.marketing/ci-cd-pipeline-setup-anleitung/

dann rockt, wenn du die Technik dahinter wirklich begriffen hast.

e Was CI/CD Pipelines wirklich sind — und warum der Begriff fast immer
falsch verstanden wird

e Die wichtigsten Komponenten einer CI/CD Pipeline: Von Source Control bis
Deployment

e Welche Tools, Plattformen und Technologien 2024 wirklich relevant sind

e Warum YAML, Docker und Infrastructure as Code kein “Nice-to-have” mehr
sind

e Die grolBten Fehler beim CI/CD Pipeline Setup — und wie du sie vermeidest

e Schritt-fur-Schritt-Anleitung: Von Null zur produktionsreifen Pipeline

e Wie Security, Rollbacks und Monitoring in eine Pipeline integriert
werden

e Warum CI/CD weit mehr als Continuous Integration und Continuous
Deployment bedeutet

e Was die Zukunft bringt: GitOps, Progressive Delivery und das Ende der
Click-Deploys

CI/CD Pipeline Setup ist das Buzzword, das in jedem Bewerbungsgesprach und
jeder strategischen IT-Prasentation fallt — und trotzdem verstehen die
Wenigsten, was wirklich dahintersteckt. Die traurige Wahrheit: Viele Teams
automatisieren gar nichts, sie verschieben nur das Chaos von Handarbeit in
schlecht gewartete Jenkins-Jobs oder klicken sich durch grafische Build-
Tools, bis alles wieder auseinanderfliegt. Doch moderne Softwareentwicklung
braucht echte Automatisierung: Wiederholbare, versionierte, nachvollziehbare
Prozesse fir Build, Test und Deployment. Ohne eine robuste CI/CD Pipeline ist
jeder Release ein Lotteriespiel — und jede Downtime ein absehbares Desaster.

Die ersten funf Erwahnungen des Hauptkeywords: CI/CD Pipeline Setup ist nicht
irgendein DevOps-Trend, sondern die Grundvoraussetzung fur Hochverflgbarkeit,
schnelle Releases und skalierbare Entwicklungsteams. Ohne CI/CD Pipeline
Setup bleibt jedes Team in der Warteschleife von “Works on my machine” und
Release-Panik stecken. CI/CD Pipeline Setup sorgt daflir, dass Software von
Commit bis Produktion durchgangig getestet, gebaut und ausgeliefert wird —
und zwar automatisch, reproduzierbar und dokumentiert. Wer das CI/CD Pipeline
Setup ignoriert, wird von Mitbewerbern ulberrollt, die schneller, sicherer und
agiler liefern. CI/CD Pipeline Setup ist 2024 kein Wettbewerbsvorteil mehr,
sondern Uberlebensnotwendigkeit.

In diesem Artikel bekommst du das komplette, ungefilterte Wissen fir den
Aufbau einer wirklich funktionierenden CI/CD Pipeline — von den technischen
Grundlagen bis zu den typischen Fallstricken, die in der Praxis alles
ruinieren. Du erfahrst, welche Tools und Architekturen heute State of the Art
sind, wie du Security, Monitoring und Rollbacks sauber integrierst, und warum
YAML-Dateien in Wahrheit alles andere als “easy” sind. Schluss mit
Automatisierungsluge — hier gibt’s den echten Fahrplan fur Continuous
Integration und Continuous Delivery, der halt, was er verspricht.



Was 1st eine CI/CD Pipeline
wirklich? Die Wahrheit
jenseits der Marketing-
Buzzwords

CI/CD steht fir Continuous Integration (CI) und Continuous
Delivery/Deployment (CD) — aber das ist nur die halbe Wahrheit. Im Kern
beschreibt eine CI/CD Pipeline einen automatisierten, standardisierten und
versionierten Prozess, der jeden Code-Change von der Entwicklung bis zum
produktiven Deployment begleitet. Dabei werden alle Schritte — von Unit Tests
uber Build, Code-Analyse, Security-Checks bis zum Rollout — in einer Pipeline
orchestriert, dokumentiert und automatisiert abgearbeitet. Klingt nach
DevOps-Magie? Ist aber in Wahrheit die bittere Notwendigkeit moderner
Softwareentwicklung.

Das CI/CD Pipeline Setup ist die Antwort auf jahrzehntelange Release-Holle,
in der manuelle Handgriffe, fehleranfallige Ubergaben und “klappt nur lokal”-
Probleme den Alltag bestimmt haben. Durch die Automatisierung aller
Entwicklungs- und Deployment-Schritte wird sichergestellt, dass Software
immer in der gleichen, getesteten, nachvollziehbaren Qualitat ausgeliefert
wird. Die CI/CD Pipeline dokumentiert jeden Schritt, erzeugt Audit-Trails und
ermoglicht Rollbacks — und zwar auf Knopfdruck, nicht nach endlosen Meetings.

Wer glaubt, “Automatisierung” sei mit ein paar Jenkins-Jobs erledigt, hat das
CI/CD Pipeline Setup nicht verstanden. Eine echte Pipeline integriert Source
Control (z.B. Git), automatisierte Builds, statische Codeanalyse, Security-
Checks, automatische Tests, Artefakt-Management, Containerisierung (z.B.
Docker), Infrastructure as Code (z.B. Terraform), Deployment in Cloud- oder
On-Premises-Umgebungen und Monitoring. Und das alles orchestriert,
versioniert und reproduzierbar. Anything less ist Clicky-Bunty-Automation —
und davon hat die deutsche IT-Landschaft schon mehr als genug.

Die beste CI/CD Pipeline ist unsichtbar — weil sie nahtlos funktioniert,
Fehler fruh erkennt und jedes Deployment zum Routineprozess macht. Wer das
Ziel erreicht, kann Deployments beliebig oft, schnell und sicher ausrollen,
Feature Flags nutzen, Blue/Green-Deployments fahren und neue Features testen,
ohne Angst vor Komplettausfallen zu haben. Voraussetzung: Das CI/CD Pipeline
Setup ist professionell, wartbar und robust. Alles andere ist Spielerei.

Die Komponenten einer CI/CD



Pipeline: Tools, Technologien
und Architektur 2024

Die CI/CD Pipeline besteht aus mehreren, logisch aufeinander aufbauenden
Stufen — jede davon ist kritisch, jede kann zum Bottleneck werden. Wer hier
schludert, produziert am Ende keine Automatisierung, sondern nur
automatisierten Unsinn. Zeit fur den Deep Dive:

Source Control Management (SCM): Git ist hier der de facto Standard,
egal ob GitHub, GitLab, Bitbucket oder Azure DevOps. Ohne Versionierung
gibt es keine Nachvollziehbarkeit und keine Basis fur Trunk-Based
Development, GitFlow oder Feature Branches.

Build Automation: Tools wie Maven, Gradle, npm, yarn, oder Make sorgen
far reproduzierbare Builds. Containerisierung mit Docker ist fast immer
Pflichtprogramm, weil sie garantiert, dass das Artefakt auf jedem System
gleich lauft.

Test Automation: Unit-, Integration- und End-to-End-Tests sind Pflicht.
Wer an Tests spart, spart an Qualitat. Frameworks wie JUnit, Jest,
Cypress, Selenium & Co. gehdren in jede Pipeline.

Static Code Analysis & Security Scans: SonarQube, Snyk, Trivy, oder
OWASP Dependency-Check filtern Schwachstellen und schlechten Code
frihzeitig aus. Je fruher, desto billiger — das ist das Gesetz der
Softwareentwicklung.

Artifact Repository: Nexus, Artifactory oder Container-Registries wie
Docker Hub speichern Build-Artefakte, Images und Pakete versioniert und
zugriffsgesteuert.

Infrastructure as Code (IaC): Terraform, Ansible, Helm oder Pulumi
sorgen fur automatisierte, versionierte Infrastruktur-Setups — egal ob
auf AWS, Azure, Google Cloud oder On-Premises.

Deployment Automation: Jenkins, GitLab CI, GitHub Actions, ArgoCD,
Spinnaker oder Tekton orchestrieren das Ausrollen der Builds in Test-,
Staging- und Produktivumgebungen. YAML ist dabei das neue XML: geliebt,
gehasst, unvermeidbar.

Monitoring und Logging: Prometheus, Grafana, ELK-Stack oder Datadog
uberwachen Deployments, Applikationen und Infrastruktur, liefern
Metriken und triggern im Fehlerfall automatische Rollbacks oder Alarme.

Die Architektur einer CI/CD Pipeline ist hochgradig modular und muss auf die
Bedlirfnisse der jeweiligen Anwendung und Organisation zugeschnitten sein.
Monolithische Jenkins-Pipelines sind 2024 so sexy wie Internet Explorer 6:
Wer heute noch alles in einem Skript erschlagt, zlichtet den nachsten “Single
Point of Failure” heran. Besser: Microservices-Architekturen, Container-
Orchestrierung via Kubernetes und Pipelines, die uber APIs und Event-Trigger
miteinander kommunizieren — keine monolithische YAML-HOlle, sondern flexible,
wartbare Automatisierung.

Wichtig: Jede Komponente der Pipeline muss versionierbar und testbar sein.
Das gilt nicht nur fir den Code, sondern auch fur die Infrastruktur —
Stichwort Infrastructure as Code. Nur so lassen sich Umgebungen klonen,



Fehler reproduzieren und Deployments zuverlassig zuruckdrehen. Wer hier
spart, zahlt spatestens beim nachsten Qutage den Preis.

CI/CD Pipeline Setup: Schritt
fur Schritt zur
produktionsreifen
Automatisierung

Wie baut man eine CI/CD Pipeline, die nicht schon am ersten Tag im YAML-
Nirwana endet oder beim dritten Build-Job auseinanderfliegt? Hier ist der
Fahrplan — ehrlich, kritisch, und garantiert ohne Bullshit:

e 1. Repository-Struktur und Branching-Strategie festlegen: Ohne saubere
Git-Struktur (z.B. trunk-based, gitflow) wird jede Automatisierung zum
Alptraum. RegelmaBig gemergte, kleine Commits sind Pflicht.

e 2. Build- und Test-Automatisierung aufsetzen: Lege Build-Skripte (z.B.
Maven, Gradle, npm) und Test-Routinen (Unit, Integration, E2E) an. Alles
muss Uber einen einzigen Befehl automatisiert ausfihrbar sein — auch
lokal.

e 3. Pipeline als Code definieren: Nutze YAML oder deklarative Pipelines
(z.B. Jenkinsfile, .gitlab-ci.yml). Jede Anderung an der Pipeline gehdrt
ins Repository, keine geheimen Klicks in der UI.

e 4, Artifact Management integrieren: Speichere Build-Ergebnisse
versioniert in einem Artefakt-Repository. Niemals direkt aus dem Build-
Server deployen — sonst ist Rollback unmoglich.

e 5, Infrastructure as Code bereitstellen: Nutze Terraform, Helm oder
Ansible, um Infrastruktur und Deployments zu automatisieren. Alles, was
auf einem Server lauft, muss als Code existieren.

e 6. Security und Compliance automatisieren: Integriere statische
Codeanalyse, Dependency-Checks und Secret-Scanning in die Pipeline.
Jeder Merge-Request muss gepruft werden — keine Ausnahmen.

e 7. Deployment-Automatisierung entwickeln: Setze automatisierte
Deployments fur Test-, Staging- und Produktionsumgebungen auf. Nutze
Blue/Green- oder Canary-Deployments fiur risikofreie Releases.

e 8. Monitoring und Rollbacks implementieren: Jede Pipeline muss nach dem
Deployment automatisch Monitoring triggern und im Fehlerfall Rollbacks
einleiten. Keine manuelle Kontrolle, keine Ausreden.

¢ 9. Permissions und Secrets verwalten: Schlussel, Tokens und Passworter
gehdren niemals ins Repository. Nutze Secret Management (z.B. HashiCorp
Vault, Azure Key Vault) und Zugriffssteuerung auf allen Ebenen.

¢ 10. Feedback-Loops und Alerts einrichten: Automatisiere
Benachrichtigungen uber Slack, E-Mail oder PagerDuty. Fehler mussen in
Minuten auffallen — nicht nach Tagen.

Wer diese Schritte durchlauft, hat das Grundgerist einer modernen,
skalierbaren und sicheren CI/CD Pipeline. Aber Achtung: Jede Pipeline ist nur



so gut wie ihr schwachstes Glied. Ein uUbersehener Test, ein falsch gesetztes
Secret oder ein halbgarer YAML-Block koénnen alles zunichtemachen.
Automatisierung ist nichts fir Halbherzige.

CI/CD Tools und Technologien
2024: Was wirklich zahlt — und
was raus kann

Die Tool-Landschaft fur CI/CD ist 2024 eine Mischung aus Hype, Legacy und
barem Uberlebensinstinkt. Jenkins war lange der Platzhirsch, aber moderne
Alternativen wie GitHub Actions, GitLab CI, CircleCI, ArgoCD und Tekton
setzen neue MaBstabe bei Usability, Security und Wartbarkeit. Wer heute noch
auf handgestrickte Jenkins-Groovy-Skripte setzt, hat bald mehr technische
Schulden als ein Berliner Flughafen.

Docker ist als Container-Standard gesetzt, Kubernetes als Orchestrator fast
unvermeidbar. YAML ist das neue Esperanto der Automatisierung, auch wenn
viele Entwickler es inzwischen verfluchen. Infrastructure as Code ist Pflicht
— Terraform, Pulumi, CloudFormation, Helm und Ansible fuhren hier das Feld
an. Artifact Management ohne Nexus oder Artifactory ist 2024 wie
Softwareentwicklung ohne Git: nicht mehr vermittelbar.

Security ist kein Add-on, sondern integraler Bestandteil jeder Pipeline.
Snyk, Trivy, SonarQube und OWASP Tools laufen in jeder Phase mit. Wer
Security “spater” einbaut, baut sie nie ein — und 6ffnet die Tur fur Data
Breaches und Reputationsschaden.

CI/CD ohne Monitoring ist wie Autofahren ohne Tacho. Prometheus, Grafana,
ELK-Stack, Datadog oder New Relic liefern die Metriken, Logs und Alerts, die
im Fehlerfall den Unterschied zwischen Minor Qutage und Totalausfall machen.
Automatisierte Rollbacks sind kein Luxus, sondern Pflicht — alles andere ist
fahrlassig.

Wer jetzt noch auf manuelles Deployment, Copy&Paste-Konfigurationen und
Excel-Release-Listen setzt, ist nicht retro, sondern ein Sicherheitsrisiko.
Nur mit einer echten, durchgehenden Automatisierung bleibt eine Organisation
2024 konkurrenzfahig.

Fehler beim CI/CD Pipeline
Setup: Die grofSten Fallstricke



und wie du sie vermeildest

Die meisten CI/CD Pipelines scheitern nicht an Technik, sondern an falscher
Planung, schlechter Wartung und fehlender Disziplin. Hier die haufigsten
Fehler — und wie du sie vermeidest:

e Unklare Verantwortlichkeiten: Wer ist “Owner” der Pipeline? Ohne klare
Zustandigkeit verwahrlost jede Automatisierung zum Zombie-Projekt.

e Keine Versionierung der Pipeline: Anderungen an Build- oder Deploy-
Skripten gehdéren ins Repository. Alles andere ist Support-Holle.

e Pipeline-Flickwerk: Funf verschiedene Tools, drei Build-Systeme und kein
einheitlicher Standard? Willkommen im Maintenance-Albtraum.

e Fehlende Testabdeckung: Automatisierte Deployments ohne automatisierte
Tests sind wie russisches Roulette — irgendwann ist Feierabend.

e Secrets im Code: Passworter, API-Keys oder Tokens im Repository?
Datenschutz-GAU vorprogrammiert. Nutze Secret Management.

e Manual Intervention: Jede manuelle Aktion im Pipeline-Prozess ist eine
potenzielle Fehlerquelle. “Works on my machine” ist kein
Qualitatsmerkmal.

e Fehlende Rollbacks: Kein Rollback nach gescheitertem Deployment? Dann
viel Spall beim nachtlichen Debugging im Live-System.

e Monitoring vergessen: Was nicht gemessen wird, existiert nicht. Ohne
Monitoring keine Fehlererkennung, keine Optimierung, keine Kontrolle.

Die Ldésung ist immer die gleiche: Automatisiere alles, was automatisierbar
ist. Versioniere jede Anderung. Dokumentiere jeden Schritt. Und: Uberwache
und teste die Pipeline regelmalig — nichts ist schlimmer als eine
Automatisierung, die monatelang ungesehen Fehler produziert.

CI/CD 2024 und die Zukunft:
GitOps, Progressive Delivery &
das Ende der Click-Deploys

CI/CD entwickelt sich rasant weiter. Neue Paradigmen wie GitOps verschieben
die Verantwortung fur Infrastruktur und Deployments komplett ins Git-
Repository. Changes werden als Pull Request diskutiert, gemerged und
automatisch ausgerollt. Tools wie FluxCD und ArgoCD setzen neue MaRstabe fur
deklarative Deployments — und reduzieren menschliche Fehler auf ein Minimum.

Progressive Delivery — also Canary-Releases, Feature Flags und automatische
Rollbacks — werden Standard. Deployments werden nicht mehr “Big Bang”
ausgerollt, sondern schrittweise, Uberwacht und im Zweifel wieder
zuruckgenommen. Das senkt das Risiko, erhodht die Geschwindigkeit und
ermoglicht echten A/B-Test-basierten Rollout neuer Features.

Click-Deploys, manuelle Konfigurationsanderungen und “Release Excel Sheets”
sind endgultig Geschichte. Moderne CI/CD Pipelines sind selbstheilend,



auditierbar und so integriert, dass jede Anderung an Code, Konfiguration und
Infrastruktur nachvollziehbar bleibt. Wer jetzt nicht aufspringt, wird 2025
nur noch zusehen — und zwar von ganz hinten.

Der Weg dahin? Radikal automatisieren, alles als Code abbilden, Security und
Monitoring von Anfang an integrieren — und keine Kompromisse bei Qualitat und
Kontrolle eingehen. Das ist die Zukunft. Sie gehdrt den Teams, die CI/CD
wirklich verstanden haben — und nicht denen, die auf den nachsten Hype
warten.

Fazit: CI/CD Pipeline Setup —
Automatisiere oder stirb
digital

CI/CD Pipeline Setup ist kein Luxus, sondern Pflicht. Wer heute noch manuell
deployed, hat im digitalen Wettbewerb langst verloren. Die richtige Pipeline
ist der Schlussel zu stabilen, schnellen und sicheren Releases — und damit
zur Innovationsfahigkeit des gesamten Unternehmens. Alles andere ist 2024 nur
noch digitaler Selbstmord.

Der Weg zur perfekten Pipeline ist steinig, voller YAML-Fallen, Tool-
Entscheidungen und Architekturfragen. Aber: Wer automatisiert, gewinnt. Wer
weiter klickt und schiebt, verliert. CI/CD Pipeline Setup ist der einzige
Weg, Softwareentwicklung in den Griff zu bekommen — und der einzige Weg, im
Maschinenraum der Digitalisierung zu Uberleben. Willkommen bei der Realitat.
Willkommen bei 404.



