CI/CD Pipeline Beispiel
So lauft’s bei Profis ab

Category: Tools
geschrieben von Tobias Hager | 12. August 2025

- II [—
: T

_:_1..4-5-4 &-—4 o mﬁw

’ .—-----—-———- ‘

CI/CD Pipeline Beispiel
So lauft’s beil Profis ab

Du denkst, deine Deployment-Prozesse sind schon halbwegs automatisiert, nur
weil du ein paar Bash-Skripte und GitHub Actions benutzt? Schdén war’s. Im
echten Profi-Alltag ist eine CI/CD Pipeline mehr als ein hipper Buzzword-
Feuerwerk. Hier geht es um kompromisslose Automatisierung, knallharte
Kontrolle und null Toleranz fir Fehler — und genau das bekommst du jetzt: den
schonungslos ehrlichen Deep Dive in den Aufbau einer CI/CD Pipeline, wie sie
im Jahr 2025 bei Profis lauft. Kein Marketing-Geblubber. Nur harte Fakten,
technische Details und ein Beispiel, das du so im Internet sonst vergeblich
suchst.

e Was eine moderne CI/CD Pipeline wirklich ausmacht — und warum 99% aller
Unternehmen sie falsch bauen

e Die wichtigsten Komponenten einer CI/CD Pipeline: Von Source Control,
Build-Servern bis Container Orchestration

e Ein vollstandiges, realitatsnahes CI/CD Pipeline Beispiel — Schritt fur

https://404.marketing/cicd-pipeline-beispiel-fuer-profis/
https://404.marketing/cicd-pipeline-beispiel-fuer-profis/

Schritt erklart

e Welche Automatisierungen Profis heute umsetzen (und was du dir sparen
kannst)

e Wie du Sicherheit, Qualitat und Geschwindigkeit in Einklang bringst —
statt nur “DevOps” auf die Visitenkarte zu schreiben

e Die besten Tools fur 2025 — von GitLab CI, Jenkins, GitHub Actions bis
ArgoCD und Co.

e Typische Fehler, technische Schulden und wie du sie in deiner Pipeline
radikal eliminierst

e Warum CI/CD Pipelines der Schliussel fur Skalierbarkeit, Release-Frequenz
und Deployment-Sicherheit sind

CI/CD Pipeline. Alle reden druber, kaum jemand setzt es richtig um. In den
meisten Unternehmen ist die ,Pipeline” nicht viel mehr als ein schuchternes
Skript, das nach dem Push ein paar Unit-Tests ausfuhrt und dann die Artefakte
irgendwo hinlegt — Hauptsache, niemand muss den FTP-Client anfassen. Die
Wahrheit sieht anders aus: Continuous Integration und Continuous
Delivery/Deployment sind anspruchsvolle Prozesse, in denen Automatisierung,
Qualitatssicherung, Security und Skalierbarkeit kompromisslos
ineinandergreifen missen. In diesem Artikel zerlegen wir die CI/CD Pipeline
Schritt fir Schritt — technisch, praxisnah und so ehrlich, wie du es sonst
nirgends liest. Keine Ausflichte, keine Halbwahrheiten. Nur die harte
Realitat aus dem Maschinenraum der Profis.

CI/CD Pipeline: Definition,
Hauptkeyword, und warum du
ohne sie 2025 keine Chance
hast

CI/CD Pipeline ist nicht nur ein weiteres Buzzword im Online-Marketing- und
IT-Kosmos, sondern der technologische Backbone moderner Softwareentwicklung.
Die Abkurzung steht fur Continuous Integration und Continuous
Delivery/Deployment. Wer im Jahr 2025 noch manuell deployed, darf sich nicht
wundern, wenn Innovation, Skalierung und Sicherheit im eigenen Unternehmen
auf der Strecke bleiben. Die CI/CD Pipeline ist der Prozess, mit dem
Anderungen am Code automatisiert gebaut, getestet und ausgeliefert werden —
und zwar fehlerfrei, nachvollziehbar und jederzeit wiederholbar.

Das Kernziel einer CI/CD Pipeline: Code-Anderungen so schnell, sicher und
automatisiert wie moéglich von der Entwicklungsumgebung bis in die Produktion
zu bringen. Dabei greifen zahlreiche technische Komponenten ineinander:
Source Control (z.B. Git), Build-Automatisierung (Maven, Gradle, npm),
Testautomatisierung (Unit, Integration, E2E), Containerisierung (Docker,
Podman), Orchestrierung (Kubernetes, OpenShift), Secrets Management (Vault,
SOPS), Monitoring (Prometheus, Grafana) und vieles mehr. Wer an einem Glied
dieser Kette spart oder pfuscht, riskiert Datenverlust, Sicherheitslicken und

das totale Chaos beim nachsten Release.

Im ersten Drittel dieses Artikels wird der Begriff CI/CD Pipeline mindestens
fanfmal fallen. Warum? Weil du dir merken musst: Die CI/CD Pipeline ist der
rote Faden, der erfolgreiche Softwareprojekte im Jahr 2025 zusammenhalt. Ohne
CI/CD Pipeline ist jede noch so hubsche App wertlos, weil sie nie
zuverlassig, schnell und sicher beim Nutzer landet. Und ja: CI/CD Pipeline
ist das Hauptkeyword, das du ab sofort nicht mehr vergisst.

Jede CI/CD Pipeline besteht aus festen Phasen: Continuous Integration (CI)
pruft und integriert Codeanderungen automatisiert. Continuous Delivery (CD)
bereitet Deployments so vor, dass sie jederzeit live gehen kdénnen. Continuous
Deployment (ebenfalls CD) geht noch einen Schritt weiter und deployed
automatisch nach bestandenen Tests. Wer noch manuell ,Deploy“ klickt, ist
schon raus aus dem Rennen. Die CI/CD Pipeline ist heute der Goldstandard —
alles andere ist digitale Steinzeit.

Um das Thema CI/CD Pipeline in den Griff zu bekommen, musst du verstehen, wie
die einzelnen Stufen — von Commit, Build, Test, Artifact Management,
Containerisierung bis Production Deployment — technisch und organisatorisch
zusammenspielen. In den nachsten Abschnitten nehmen wir genau das
auseinander. Und zwar so, dass am Ende keine Fragen offenbleiben.

Die Komponenten einer modernen
CI/CD Pipeline: Architektur,
Tools und technische
Fallstricke

Wer eine CI/CD Pipeline aufbauen will, braucht mehr als nur einen Build-
Server und ein paar Shell-Skripte. Die Architektur ist komplex und setzt sich
aus mehreren, eng verzahnten Komponenten zusammen. Jede Stufe der Pipeline
muss automatisiert, dokumentiert und kontrolliert ablaufen. Die wichtigsten
Bausteine einer echten CI/CD Pipeline sind:

e Source Control Management (SCM): Git ist der Quasi-Standard. Branching-
Strategien (Git Flow, Trunk-Based Development) und Pull Requests sind
Pflicht, keine Kir. Die Pipeline startet immer beim Commit.

e Build Automation: Tools wie Jenkins, GitlLab CI, GitHub Actions oder
CircleCI ubernehmen das automatisierte Bauen der Software. Build-Skripte
mussen versioniert, reproduzierbar und portabel sein.

e Test Automation: Unit-Tests, Integrationstests, End-to-End-Tests — alles
automatisiert. Ein Build, der auch nur einen Testfall nicht besteht,
darf niemals deployed werden.

e Artifact Management: Artefakte (Binaries, Container Images, Packages)
werden in dedizierten Repositories wie JFrog Artifactory, Nexus oder
GitHub Packages gespeichert. Keine Artefakte auf lokalen Developer-

Maschinen.

e Containerization und Orchestration: Docker-Images sind Standard.
Orchestrierung Ubernimmt Kubernetes, OpenShift oder — bei kleinen
Projekten — Docker Compose. Deployments werden ausschlieflich deklarativ
beschrieben (Helm-Charts, Kustomize).

e Secrets Management: Keine Zugangsdaten im Klartext. Tools wie HashiCorp
Vault oder Sealed Secrets sorgen fur sichere Credentials.

e Monitoring, Logging & Alerting: Prometheus, Grafana, ELK-Stack und Loki
uberwachen Deployments, analysieren Logs und schlagen Alarm bei Fehlern
oder Security Incidents.

Technische Fallstricke lauern uberall: Environment-Drift zwischen Staging und
Produktion, fehlende Rollback-Strategien, Security-Loops durch schlecht
konfigurierte Permissions, leaky Containers, und naturlich das ewige Thema
“Works on my machine”. Eine echte CI/CD Pipeline muss so gebaut sein, dass
sie deterministisch, idempotent und auditierbar ist. Jeder Schritt muss
nachvollziehbar und reproduzierbar sein — egal, ob du heute oder in sechs
Monaten deployest.

Wichtig: Eine CI/CD Pipeline ist kein monolithisches Monster, sondern ein
modular aufgebautes System. Jeder Schritt — vom Checkout bis zum Deployment —
sollte als eigenstandiger, versionierter Prozess laufen. Nur so erreichst du
die notwendige Flexibilitat und Skalierbarkeit, die moderne
Softwareentwicklung heute verlangt.

Die Tool-Auswahl ist dabei kein Selbstzweck. Jenkins ist nicht per se besser
als GitLab CI oder ArgoCD — entscheidend ist, dass du die Tools verstehst,
richtig konfigurierst und regelmalfig aktualisierst. Veraltete Plugins,
unsichere Default-Settings und fehlendes Monitoring sind die Klassiker, die
selbst grolBe Teams regelmalRig aus der Bahn werfen.

CI/CD Pipeline Beispiel:
Schritt-fur-Schritt durch ein
echtes Profi-Szenario

Genug Theorie. Jetzt wird’s praktisch. Hier kommt ein vollstandiges CI/CD
Pipeline Beispiel, wie es in professionellen DevOps-Teams im Jahr 2025
Realitat ist — keine Bullshit-Show, sondern ein echtes Setup fir
Microservices und Cloud-native Anwendungen.

e 1. Code Commit in Git (GitHub/GitLab/Bitbucket):
o Feature-Branch wird erstellt, Pull Request vorbereitet.
o Jede Commit-Message folgt Konventionen (Conventional Commits, Jira-
Ticket-Nummern).
e 2. Build-Trigger & Static Code Analysis:
o Pipeline startet automatisch nach jedem Push/PR.
o Code wird durch Linter (ESLint, Pylint, SonarQube) und Security-
Scanner (Dependabot, Snyk) gepruft.

e 3. Automated Tests:
o Alle Unit-, Integration- und End-to-End-Tests laufen automatisiert.
o Fehlschlag = Build-Abbruch. Keine Ausnahmen.
e 4, Build & Artifact Creation:
o Docker-Image wird gebaut, mit Tags (Commit-Hash, SemVer) versehen.
o Image landet im zentralen Container-Registry (Docker Hub, ECR,
GitLab Container Registry).
e 5. Deployment auf Staging-Umgebung:
o Deployment erfolgt via Helm-Charts oder Kustomize auf Kubernetes-
Cluster.
o Secrets werden per Vault oder Sealed Secrets injiziert.
e 6. Acceptance & Smoke Tests:
o Automatisierte Tests prifen, ob die Staging-Umgebung wie erwartet
lauft.
e 7. Manual Approval (optional):
o Release-Manager gibt das Go fur Produktion frei (nur, wenn
Business-Logik das erfordert).
e 8. Deployment in Produktion:
o Deployment-Job lauft automatisiert, Blue/Green oder Canary
Deployment.
o Monitoring und Alerts werden aktiviert.
¢ 9. Rollback-Strategie:
o Im Fehlerfall wird automatisiert auf die letzte stabile Version
zuriuckgerollt.
e 10. Reporting & Observability:
o Deployment-Ergebnisse werden in Slack/Teams gepostet, Dashboards
aktualisiert.
o Logs und Metriken werden zentral gesammelt und ausgewertet.

Jede dieser Phasen ist technisch anspruchsvoll und darf nicht “mal eben”
konfiguriert werden. Ein echter CI/CD Pipeline-Prozess ist so gebaut, dass er
100% reproduzierbar, sicher und nachvollziehbar ablauft. Alle Artefakte,
Builds und Deployments sind versioniert. Jede Anderung ist in der Historie
dokumentiert. Im Fehlerfall ist klar, wo es hakt — und zwar nicht erst nach
drei Tagen Debugging.

Dieses Beispiel bildet das MindestmaR ab. In der Praxis kommen oft noch
zusatzliche Stages dazu: Infrastruktur-as-Code (Terraform, Pulumi), Security
Audits, Performance-Tests, Feature Toggles und Dark Launches. Die Grundregel
bleibt: Automatisiere alles, was automatisierbar ist — und Uberwache alles,
was schiefgehen kann.

Wer in der Pipeline noch manuelle Schritte, ungesicherte Secrets oder
inkonsistente Umgebungen toleriert, bettelt um Arger. Profis bauen ihre CI/CD
Pipeline so, dass sie selbst bei personellen Ausfallen, spontanen Releases
oder Sicherheitsvorfallen stabil und nachvollziehbar bleibt. Alles andere ist
Amateur-Status.

CI/CD Tools 2025: Was Profis
wirklich nutzen — und was du
vergessen kannst

Es gibt gefihlt 1000 Tools fir den Aufbau einer CI/CD Pipeline. Die meisten
davon taugen maximal als Proof-of-Concept fur Studentenprojekte. In der
echten Welt von Enterprise-Software, Cloud-Native und skalierbaren Services
haben sich einige klare Favoriten etabliert — und das aus gutem Grund.

e GitLab CI/CD: Komplettlosung mit nativer Integration fur Build, Test,
Deploy. YAML-basierte Pipelines, exzellente Docker-Unterstutzung, GitOps
ready.

e Jenkins: Der Klassiker, nahezu unbegrenzte Flexibilitat durch Plugins
und Skripting. Aber: Wartungsintensiv, Security-Patching Pflicht.

e GitHub Actions: Perfekt fur Open Source und kleinere Teams. Einfach,
schnell, gute Community-Snippets. Aber limitiert bei komplexen Multi-
Stage-Pipelines.

e ArgoCD: Das Nonplusultra fur Kubernetes-Native Continuous Deployment.
GitOps-Ansatz, deklarative Deployments, Rollbacks und Promotions out-of-
the-box.

e CircleCI, Travis CI, Bamboo, TeamCity: Je nach Use Case und Legacy-Stack
ebenfalls eine Option — aber im Jahr 2025 meist nur noch in Nischen
relevant.

Container Orchestration lauft heute praktisch immer Uber Kubernetes. Helm und
Kustomize sind Standard fir deklarative Deployments. Fur Infrastructure-as-
Code dominieren Terraform und Pulumi, wahrend Vault und SOPS fir Secrets
Management gesetzt sind. Wer hier noch mit selbstgestrickten Bash-Skripten
arbeitet, sollte dringend Uber einen Wechsel nachdenken — sonst ist der
nachste Security-Breach oder das gescheiterte Deployment nur eine Frage der
Zeit.

Monitoring und Observability sind kein ,,Add-on“, sondern Pflicht: Prometheus
und Grafana fur Metriken, Loki und ELK fur Logs, Sentry fur Error-Tracking.
Ohne diese Komponenten ist jede CI/CD Pipeline ein Blindflug.

Tools, die du 2025 getrost ignorieren kannst: Jenkins ohne Wartung, Tools
ohne Container-Support, Build-Systeme ohne API, Closed-Source-
Proprietarlésungen ohne verninftige Community. Alles, was nicht modular, API-
first und Cloud-native ist, hat in einer modernen CI/CD Pipeline keine
Zukunft mehr.

Typische Fehler und technische

Schulden 1in CI/CD Pipelines —
und wie du sie radikal
eliminierst

Die meisten CI/CD Pipelines werden im Laufe der Zeit zum technischen
Albtraum: Skript-Wildwuchs, undokumentierte Workarounds, manuelle Handover-
Punkte, und natlrlich die berudhmten “temporaren” Hacks, die seit Jahren
niemand mehr angefasst hat. Das Problem: Solche Altlasten zerstdren die
Vorteile der Automatisierung und machen jeden Release zum russischen
Roulette.

Typische Fehlerquellen in CI/CD Pipelines:

e Intransparente Build-Prozesse: Niemand weils, welche Schritte im Detail
ablaufen. Fehler sind schwer nachzuvollziehen, Debugging dauert ewig.

e Fehlende Rollback-Funktionalitat: Im Fehlerfall ist kein automatischer
Rollback méglich. Deployments missen handisch zuriickgedreht werden — mit
allen Risiken.

e Secrets im Klartext: Zugangsdaten, API Keys oder Zertifikate werden im
Klartext in Repos oder Skripten abgelegt. Ein gefundenes Fressen flr
Angreifer.

e Inkonstistente Umgebungen: Staging und Produktion sind unterschiedlich
konfiguriert. Bugs treten nur live auf und sind schwer reproduzierbar.

e Fehlendes Monitoring: Fehler und Ausfalle werden erst bemerkt, wenn der
Kunde schon betroffen ist. Keine Alerts, keine automatisierten Checks.

e Veraltete Abhangigkeiten: Libraries, Plugins, Images werden nicht
regelmaBig aktualisiert. Security-Lucken sind vorprogrammiert.

Wie eliminierst du diese technischen Schulden dauerhaft? Hier eine radikale,
aber bewahrte Schritt-flr-Schritt-Liste, die in jeder Profi-Pipeline Pflicht
sein sollte:

e Setze auf deklarative Konfiguration (Infrastructure as Code, Pipelines
as Code)

e Versioniere alle Skripte, Artefakte und Konfigurationen

e Automatisiere Tests, Security-Scans und Deployments vollstandig

e Nutze Secrets Management Tools — keine Zugangsdaten im Klartext

e Stelle sicher, dass jede Umgebung (Dev, Stage, Prod) identisch aufgebaut
ist

e Implementiere automatische Rollbacks und Feature Toggles

e Baue umfassendes Monitoring, Logging und Alerting ein

e Halte alle Abhangigkeiten aktuell und patche regelmaRig

e Priife nach jeder Anderung die gesamte Pipeline per Dry-Run oder Staging-
Deploy

Wer diese Prinzipien konsequent umsetzt, bekommt eine CI/CD Pipeline, die
nicht nur heute, sondern auch in drei Jahren noch stabil lauft — unabhangig
davon, wer im Team gerade den Hut aufhat.

Fazit: CI/CD Pipeline als
Schlusseltechnologie — oder
warum du ohne bald Geschichte
bist

CI/CD Pipeline ist kein Luxus, kein Marketing-Gag und schon gar kein “wir
machen das irgendwann mal”. Sie ist 2025 das zwingende Fundament fur jeden,
der Software ernsthaft, sicher und schnell in Produktion bringen will. Wer
heute noch ohne automatisierte Pipelines, reproducible Builds und
durchgangige Tests arbeitet, macht sich selbst zum Digital-Dino — und wird
uber kurz oder lang von der Konkurrenz gefressen.

Die gute Nachricht: Der Aufbau einer professionellen CI/CD Pipeline ist keine
Raketenwissenschaft, aber er erfordert konsequentes Umdenken, technisches
Know-how und ein kompromissloses Bekenntnis zur Automatisierung. Wer sich den
Aufwand heute spart, zahlt morgen mit Downtimes, Security-Breaches und
verpassten Releases. Wer es jetzt richtig macht, sichert sich
Geschwindigkeit, Qualitat und Skalierbarkeit — und damit den entscheidenden
Vorsprung im digitalen Wettrennen. Deine Wahl.

