
CI/CD Pipeline Beispiel:
So läuft’s bei Profis ab
Category: Tools
geschrieben von Tobias Hager | 12. August 2025

CI/CD Pipeline Beispiel:
So läuft’s bei Profis ab
Du denkst, deine Deployment-Prozesse sind schon halbwegs automatisiert, nur
weil du ein paar Bash-Skripte und GitHub Actions benutzt? Schön wär’s. Im
echten Profi-Alltag ist eine CI/CD Pipeline mehr als ein hipper Buzzword-
Feuerwerk. Hier geht es um kompromisslose Automatisierung, knallharte
Kontrolle und null Toleranz für Fehler – und genau das bekommst du jetzt: den
schonungslos ehrlichen Deep Dive in den Aufbau einer CI/CD Pipeline, wie sie
im Jahr 2025 bei Profis läuft. Kein Marketing-Geblubber. Nur harte Fakten,
technische Details und ein Beispiel, das du so im Internet sonst vergeblich
suchst.

Was eine moderne CI/CD Pipeline wirklich ausmacht – und warum 99% aller
Unternehmen sie falsch bauen
Die wichtigsten Komponenten einer CI/CD Pipeline: Von Source Control,
Build-Servern bis Container Orchestration
Ein vollständiges, realitätsnahes CI/CD Pipeline Beispiel – Schritt für

https://404.marketing/cicd-pipeline-beispiel-fuer-profis/
https://404.marketing/cicd-pipeline-beispiel-fuer-profis/


Schritt erklärt
Welche Automatisierungen Profis heute umsetzen (und was du dir sparen
kannst)
Wie du Sicherheit, Qualität und Geschwindigkeit in Einklang bringst –
statt nur “DevOps” auf die Visitenkarte zu schreiben
Die besten Tools für 2025 – von GitLab CI, Jenkins, GitHub Actions bis
ArgoCD und Co.
Typische Fehler, technische Schulden und wie du sie in deiner Pipeline
radikal eliminierst
Warum CI/CD Pipelines der Schlüssel für Skalierbarkeit, Release-Frequenz
und Deployment-Sicherheit sind

CI/CD Pipeline. Alle reden drüber, kaum jemand setzt es richtig um. In den
meisten Unternehmen ist die „Pipeline“ nicht viel mehr als ein schüchternes
Skript, das nach dem Push ein paar Unit-Tests ausführt und dann die Artefakte
irgendwo hinlegt – Hauptsache, niemand muss den FTP-Client anfassen. Die
Wahrheit sieht anders aus: Continuous Integration und Continuous
Delivery/Deployment sind anspruchsvolle Prozesse, in denen Automatisierung,
Qualitätssicherung, Security und Skalierbarkeit kompromisslos
ineinandergreifen müssen. In diesem Artikel zerlegen wir die CI/CD Pipeline
Schritt für Schritt – technisch, praxisnah und so ehrlich, wie du es sonst
nirgends liest. Keine Ausflüchte, keine Halbwahrheiten. Nur die harte
Realität aus dem Maschinenraum der Profis.

CI/CD Pipeline: Definition,
Hauptkeyword, und warum du
ohne sie 2025 keine Chance
hast
CI/CD Pipeline ist nicht nur ein weiteres Buzzword im Online-Marketing- und
IT-Kosmos, sondern der technologische Backbone moderner Softwareentwicklung.
Die Abkürzung steht für Continuous Integration und Continuous
Delivery/Deployment. Wer im Jahr 2025 noch manuell deployed, darf sich nicht
wundern, wenn Innovation, Skalierung und Sicherheit im eigenen Unternehmen
auf der Strecke bleiben. Die CI/CD Pipeline ist der Prozess, mit dem
Änderungen am Code automatisiert gebaut, getestet und ausgeliefert werden –
und zwar fehlerfrei, nachvollziehbar und jederzeit wiederholbar.

Das Kernziel einer CI/CD Pipeline: Code-Änderungen so schnell, sicher und
automatisiert wie möglich von der Entwicklungsumgebung bis in die Produktion
zu bringen. Dabei greifen zahlreiche technische Komponenten ineinander:
Source Control (z.B. Git), Build-Automatisierung (Maven, Gradle, npm),
Testautomatisierung (Unit, Integration, E2E), Containerisierung (Docker,
Podman), Orchestrierung (Kubernetes, OpenShift), Secrets Management (Vault,
SOPS), Monitoring (Prometheus, Grafana) und vieles mehr. Wer an einem Glied
dieser Kette spart oder pfuscht, riskiert Datenverlust, Sicherheitslücken und



das totale Chaos beim nächsten Release.

Im ersten Drittel dieses Artikels wird der Begriff CI/CD Pipeline mindestens
fünfmal fallen. Warum? Weil du dir merken musst: Die CI/CD Pipeline ist der
rote Faden, der erfolgreiche Softwareprojekte im Jahr 2025 zusammenhält. Ohne
CI/CD Pipeline ist jede noch so hübsche App wertlos, weil sie nie
zuverlässig, schnell und sicher beim Nutzer landet. Und ja: CI/CD Pipeline
ist das Hauptkeyword, das du ab sofort nicht mehr vergisst.

Jede CI/CD Pipeline besteht aus festen Phasen: Continuous Integration (CI)
prüft und integriert Codeänderungen automatisiert. Continuous Delivery (CD)
bereitet Deployments so vor, dass sie jederzeit live gehen können. Continuous
Deployment (ebenfalls CD) geht noch einen Schritt weiter und deployed
automatisch nach bestandenen Tests. Wer noch manuell „Deploy“ klickt, ist
schon raus aus dem Rennen. Die CI/CD Pipeline ist heute der Goldstandard –
alles andere ist digitale Steinzeit.

Um das Thema CI/CD Pipeline in den Griff zu bekommen, musst du verstehen, wie
die einzelnen Stufen – von Commit, Build, Test, Artifact Management,
Containerisierung bis Production Deployment – technisch und organisatorisch
zusammenspielen. In den nächsten Abschnitten nehmen wir genau das
auseinander. Und zwar so, dass am Ende keine Fragen offenbleiben.

Die Komponenten einer modernen
CI/CD Pipeline: Architektur,
Tools und technische
Fallstricke
Wer eine CI/CD Pipeline aufbauen will, braucht mehr als nur einen Build-
Server und ein paar Shell-Skripte. Die Architektur ist komplex und setzt sich
aus mehreren, eng verzahnten Komponenten zusammen. Jede Stufe der Pipeline
muss automatisiert, dokumentiert und kontrolliert ablaufen. Die wichtigsten
Bausteine einer echten CI/CD Pipeline sind:

Source Control Management (SCM): Git ist der Quasi-Standard. Branching-
Strategien (Git Flow, Trunk-Based Development) und Pull Requests sind
Pflicht, keine Kür. Die Pipeline startet immer beim Commit.
Build Automation: Tools wie Jenkins, GitLab CI, GitHub Actions oder
CircleCI übernehmen das automatisierte Bauen der Software. Build-Skripte
müssen versioniert, reproduzierbar und portabel sein.
Test Automation: Unit-Tests, Integrationstests, End-to-End-Tests – alles
automatisiert. Ein Build, der auch nur einen Testfall nicht besteht,
darf niemals deployed werden.
Artifact Management: Artefakte (Binaries, Container Images, Packages)
werden in dedizierten Repositories wie JFrog Artifactory, Nexus oder
GitHub Packages gespeichert. Keine Artefakte auf lokalen Developer-



Maschinen.
Containerization und Orchestration: Docker-Images sind Standard.
Orchestrierung übernimmt Kubernetes, OpenShift oder – bei kleinen
Projekten – Docker Compose. Deployments werden ausschließlich deklarativ
beschrieben (Helm-Charts, Kustomize).
Secrets Management: Keine Zugangsdaten im Klartext. Tools wie HashiCorp
Vault oder Sealed Secrets sorgen für sichere Credentials.
Monitoring, Logging & Alerting: Prometheus, Grafana, ELK-Stack und Loki
überwachen Deployments, analysieren Logs und schlagen Alarm bei Fehlern
oder Security Incidents.

Technische Fallstricke lauern überall: Environment-Drift zwischen Staging und
Produktion, fehlende Rollback-Strategien, Security-Loops durch schlecht
konfigurierte Permissions, leaky Containers, und natürlich das ewige Thema
“Works on my machine”. Eine echte CI/CD Pipeline muss so gebaut sein, dass
sie deterministisch, idempotent und auditierbar ist. Jeder Schritt muss
nachvollziehbar und reproduzierbar sein – egal, ob du heute oder in sechs
Monaten deployest.

Wichtig: Eine CI/CD Pipeline ist kein monolithisches Monster, sondern ein
modular aufgebautes System. Jeder Schritt – vom Checkout bis zum Deployment –
sollte als eigenständiger, versionierter Prozess laufen. Nur so erreichst du
die notwendige Flexibilität und Skalierbarkeit, die moderne
Softwareentwicklung heute verlangt.

Die Tool-Auswahl ist dabei kein Selbstzweck. Jenkins ist nicht per se besser
als GitLab CI oder ArgoCD – entscheidend ist, dass du die Tools verstehst,
richtig konfigurierst und regelmäßig aktualisierst. Veraltete Plugins,
unsichere Default-Settings und fehlendes Monitoring sind die Klassiker, die
selbst große Teams regelmäßig aus der Bahn werfen.

CI/CD Pipeline Beispiel:
Schritt-für-Schritt durch ein
echtes Profi-Szenario
Genug Theorie. Jetzt wird’s praktisch. Hier kommt ein vollständiges CI/CD
Pipeline Beispiel, wie es in professionellen DevOps-Teams im Jahr 2025
Realität ist – keine Bullshit-Show, sondern ein echtes Setup für
Microservices und Cloud-native Anwendungen.

1. Code Commit in Git (GitHub/GitLab/Bitbucket):
Feature-Branch wird erstellt, Pull Request vorbereitet.
Jede Commit-Message folgt Konventionen (Conventional Commits, Jira-
Ticket-Nummern).

2. Build-Trigger & Static Code Analysis:
Pipeline startet automatisch nach jedem Push/PR.
Code wird durch Linter (ESLint, Pylint, SonarQube) und Security-
Scanner (Dependabot, Snyk) geprüft.



3. Automated Tests:
Alle Unit-, Integration- und End-to-End-Tests laufen automatisiert.
Fehlschlag = Build-Abbruch. Keine Ausnahmen.

4. Build & Artifact Creation:
Docker-Image wird gebaut, mit Tags (Commit-Hash, SemVer) versehen.
Image landet im zentralen Container-Registry (Docker Hub, ECR,
GitLab Container Registry).

5. Deployment auf Staging-Umgebung:
Deployment erfolgt via Helm-Charts oder Kustomize auf Kubernetes-
Cluster.
Secrets werden per Vault oder Sealed Secrets injiziert.

6. Acceptance & Smoke Tests:
Automatisierte Tests prüfen, ob die Staging-Umgebung wie erwartet
läuft.

7. Manual Approval (optional):
Release-Manager gibt das Go für Produktion frei (nur, wenn
Business-Logik das erfordert).

8. Deployment in Produktion:
Deployment-Job läuft automatisiert, Blue/Green oder Canary
Deployment.
Monitoring und Alerts werden aktiviert.

9. Rollback-Strategie:
Im Fehlerfall wird automatisiert auf die letzte stabile Version
zurückgerollt.

10. Reporting & Observability:
Deployment-Ergebnisse werden in Slack/Teams gepostet, Dashboards
aktualisiert.
Logs und Metriken werden zentral gesammelt und ausgewertet.

Jede dieser Phasen ist technisch anspruchsvoll und darf nicht “mal eben”
konfiguriert werden. Ein echter CI/CD Pipeline-Prozess ist so gebaut, dass er
100% reproduzierbar, sicher und nachvollziehbar abläuft. Alle Artefakte,
Builds und Deployments sind versioniert. Jede Änderung ist in der Historie
dokumentiert. Im Fehlerfall ist klar, wo es hakt – und zwar nicht erst nach
drei Tagen Debugging.

Dieses Beispiel bildet das Mindestmaß ab. In der Praxis kommen oft noch
zusätzliche Stages dazu: Infrastruktur-as-Code (Terraform, Pulumi), Security
Audits, Performance-Tests, Feature Toggles und Dark Launches. Die Grundregel
bleibt: Automatisiere alles, was automatisierbar ist – und überwache alles,
was schiefgehen kann.

Wer in der Pipeline noch manuelle Schritte, ungesicherte Secrets oder
inkonsistente Umgebungen toleriert, bettelt um Ärger. Profis bauen ihre CI/CD
Pipeline so, dass sie selbst bei personellen Ausfällen, spontanen Releases
oder Sicherheitsvorfällen stabil und nachvollziehbar bleibt. Alles andere ist
Amateur-Status.



CI/CD Tools 2025: Was Profis
wirklich nutzen – und was du
vergessen kannst
Es gibt gefühlt 1000 Tools für den Aufbau einer CI/CD Pipeline. Die meisten
davon taugen maximal als Proof-of-Concept für Studentenprojekte. In der
echten Welt von Enterprise-Software, Cloud-Native und skalierbaren Services
haben sich einige klare Favoriten etabliert – und das aus gutem Grund.

GitLab CI/CD: Komplettlösung mit nativer Integration für Build, Test,
Deploy. YAML-basierte Pipelines, exzellente Docker-Unterstützung, GitOps
ready.
Jenkins: Der Klassiker, nahezu unbegrenzte Flexibilität durch Plugins
und Skripting. Aber: Wartungsintensiv, Security-Patching Pflicht.
GitHub Actions: Perfekt für Open Source und kleinere Teams. Einfach,
schnell, gute Community-Snippets. Aber limitiert bei komplexen Multi-
Stage-Pipelines.
ArgoCD: Das Nonplusultra für Kubernetes-Native Continuous Deployment.
GitOps-Ansatz, deklarative Deployments, Rollbacks und Promotions out-of-
the-box.
CircleCI, Travis CI, Bamboo, TeamCity: Je nach Use Case und Legacy-Stack
ebenfalls eine Option – aber im Jahr 2025 meist nur noch in Nischen
relevant.

Container Orchestration läuft heute praktisch immer über Kubernetes. Helm und
Kustomize sind Standard für deklarative Deployments. Für Infrastructure-as-
Code dominieren Terraform und Pulumi, während Vault und SOPS für Secrets
Management gesetzt sind. Wer hier noch mit selbstgestrickten Bash-Skripten
arbeitet, sollte dringend über einen Wechsel nachdenken – sonst ist der
nächste Security-Breach oder das gescheiterte Deployment nur eine Frage der
Zeit.

Monitoring und Observability sind kein „Add-on“, sondern Pflicht: Prometheus
und Grafana für Metriken, Loki und ELK für Logs, Sentry für Error-Tracking.
Ohne diese Komponenten ist jede CI/CD Pipeline ein Blindflug.

Tools, die du 2025 getrost ignorieren kannst: Jenkins ohne Wartung, Tools
ohne Container-Support, Build-Systeme ohne API, Closed-Source-
Proprietärlösungen ohne vernünftige Community. Alles, was nicht modular, API-
first und Cloud-native ist, hat in einer modernen CI/CD Pipeline keine
Zukunft mehr.

Typische Fehler und technische



Schulden in CI/CD Pipelines –
und wie du sie radikal
eliminierst
Die meisten CI/CD Pipelines werden im Laufe der Zeit zum technischen
Albtraum: Skript-Wildwuchs, undokumentierte Workarounds, manuelle Handover-
Punkte, und natürlich die berühmten “temporären” Hacks, die seit Jahren
niemand mehr angefasst hat. Das Problem: Solche Altlasten zerstören die
Vorteile der Automatisierung und machen jeden Release zum russischen
Roulette.

Typische Fehlerquellen in CI/CD Pipelines:

Intransparente Build-Prozesse: Niemand weiß, welche Schritte im Detail
ablaufen. Fehler sind schwer nachzuvollziehen, Debugging dauert ewig.
Fehlende Rollback-Funktionalität: Im Fehlerfall ist kein automatischer
Rollback möglich. Deployments müssen händisch zurückgedreht werden – mit
allen Risiken.
Secrets im Klartext: Zugangsdaten, API Keys oder Zertifikate werden im
Klartext in Repos oder Skripten abgelegt. Ein gefundenes Fressen für
Angreifer.
Inkonstistente Umgebungen: Staging und Produktion sind unterschiedlich
konfiguriert. Bugs treten nur live auf und sind schwer reproduzierbar.
Fehlendes Monitoring: Fehler und Ausfälle werden erst bemerkt, wenn der
Kunde schon betroffen ist. Keine Alerts, keine automatisierten Checks.
Veraltete Abhängigkeiten: Libraries, Plugins, Images werden nicht
regelmäßig aktualisiert. Security-Lücken sind vorprogrammiert.

Wie eliminierst du diese technischen Schulden dauerhaft? Hier eine radikale,
aber bewährte Schritt-für-Schritt-Liste, die in jeder Profi-Pipeline Pflicht
sein sollte:

Setze auf deklarative Konfiguration (Infrastructure as Code, Pipelines
as Code)
Versioniere alle Skripte, Artefakte und Konfigurationen
Automatisiere Tests, Security-Scans und Deployments vollständig
Nutze Secrets Management Tools – keine Zugangsdaten im Klartext
Stelle sicher, dass jede Umgebung (Dev, Stage, Prod) identisch aufgebaut
ist
Implementiere automatische Rollbacks und Feature Toggles
Baue umfassendes Monitoring, Logging und Alerting ein
Halte alle Abhängigkeiten aktuell und patche regelmäßig
Prüfe nach jeder Änderung die gesamte Pipeline per Dry-Run oder Staging-
Deploy

Wer diese Prinzipien konsequent umsetzt, bekommt eine CI/CD Pipeline, die
nicht nur heute, sondern auch in drei Jahren noch stabil läuft – unabhängig
davon, wer im Team gerade den Hut aufhat.



Fazit: CI/CD Pipeline als
Schlüsseltechnologie – oder
warum du ohne bald Geschichte
bist
CI/CD Pipeline ist kein Luxus, kein Marketing-Gag und schon gar kein “wir
machen das irgendwann mal”. Sie ist 2025 das zwingende Fundament für jeden,
der Software ernsthaft, sicher und schnell in Produktion bringen will. Wer
heute noch ohne automatisierte Pipelines, reproducible Builds und
durchgängige Tests arbeitet, macht sich selbst zum Digital-Dino – und wird
über kurz oder lang von der Konkurrenz gefressen.

Die gute Nachricht: Der Aufbau einer professionellen CI/CD Pipeline ist keine
Raketenwissenschaft, aber er erfordert konsequentes Umdenken, technisches
Know-how und ein kompromissloses Bekenntnis zur Automatisierung. Wer sich den
Aufwand heute spart, zahlt morgen mit Downtimes, Security-Breaches und
verpassten Releases. Wer es jetzt richtig macht, sichert sich
Geschwindigkeit, Qualität und Skalierbarkeit – und damit den entscheidenden
Vorsprung im digitalen Wettrennen. Deine Wahl.


