CI/CD Pipeline Praxis: So
lauft’s wirklich ab 1im
Alltag

Category: Tools
geschrieben von Tobias Hager | 14. August 2025

CI/CD Pipeline Praxis: So
lauft’s wirklich ab 1im
Alltag

Du glaubst, deine Deployment-Pipeline ist “state of the art”, weil irgendwo
ein Jenkins lauft und der Praktikant gelegentlich einen grunen Haken sieht?
Willkommen im echten Leben: In der Praxis ist Continuous Integration und
Continuous Deployment (CI/CD) kein Buzzword-Bingo, sondern ein taglicher
Kampf zwischen Automation, Legacy, fehlenden Tests und dem ganz normalen
Wahnsinn. Hier gibt’s die schonungslose Wahrheit, wie CI/CD im Alltag
wirklich funktioniert — und was du tun musst, damit dein Tech-Stack nicht zum
Fiasko wird.


https://404.marketing/cicd-pipeline-praxis-alltag/
https://404.marketing/cicd-pipeline-praxis-alltag/
https://404.marketing/cicd-pipeline-praxis-alltag/

e Was eine CI/CD Pipeline wirklich ist — und warum sie mehr als nur ein
Tool ist

e Die grolten Mythen uber CI/CD, die dich Zeit, Geld und Nerven kosten

e Wie eine moderne CI/CD Pipeline im Alltag aussieht: Tools, Ablaufe,
Stolperfallen

e Warum Testautomatisierung und Infrastructure as Code der Schlissel sind
— wenn sie richtig laufen

e Typische Fehler in der Praxis: Von “funktioniert nur auf meinem Rechner”
bis “prod down”

e Schritt-filr-Schritt: So baust du eine robuste, skalierbare CI/CD
Pipeline auf

e Security, Monitoring, Rickroll-Strategien — die oft ignorierten
Essentials

e Welche Tools wirklich rocken — und welche du sofort vergessen kannst

e Warum CI/CD eine Team-Frage ist und keine Aufgabe fur DevOps-
Alleinkampfer

CI/CD Pipeline. Klingt nach Silicon-Valley-Raketenwissenschaft, sieht in
deutschen Unternehmen aber oft eher nach Flickenteppich aus. Die Realitat:
Ein paar Build-Skripte, ein halbherziger Jenkins-Job und das Deployment per
SSH-Login um drei Uhr morgens. Aber hey, “wir machen jetzt DevOps”! Wer
glaubt, dass der CI/CD Zauber einfach so funktioniert, wird im Alltag schnell
eines Besseren belehrt. Die Wahrheit ist: Ohne klare Prozesse, solide
Testautomatisierung und eine Pipeline, die auch unter Last und bei Fehlern
nicht sofort kollabiert, ist Continuous Deployment ein Risiko, kein Vorteil.
Wer wissen will, wie eine CI/CD Pipeline in der Praxis wirklich lauft — hier
kommt die schonungslose Analyse. Und ja, wir reden hier nicht uber
PowerPoint-Folien, sondern uber echten Code, echte Bugs und echte
Kopfschmerzen.

Was 1ist eine CI/CD Pipeline
wirklich? Die nuchterne
Realitat zwischen Theorie und
Alltag

CI/CD Pipeline — das klingt nach Hochglanzprozess, der alle Entwickler
glicklich macht und Releases zum Kinderspiel werden lasst. Die Realitat? In
den meisten Teams heift CI/CD Pipeline: Ein paar automatisierte Tests, ein
halbgares Build-Tool und eine Deploy-Strategie, die irgendwo zwischen “copy &
paste” und “Hoffnung” schwankt. Klar, in der Theorie ist Continuous
Integration das standige Zusammenfuhren von Code in ein zentrales Repository,
gefolgt von automatischem Build und Test. Continuous Deployment Ubernimmt
dann und bringt alles automatisiert in die Produktion. Klingt sauber — ist
aber in der Praxis oft ein Alptraum.

Die erste Hurde: Legacy-Systeme und wild gewachsene Infrastruktur. Viele



Unternehmen haben monolithische Anwendungen, die nie flir automatisierte
Deployments gebaut wurden. Da helfen auch die schicksten CI/CD Tools nichts,
solange jeden Tag neue Abhangigkeiten, Datenbankanderungen und kryptische
Shell-Skripte dazu kommen. Die Pipeline wird zum Flickwerk, bei dem niemand
mehr weils, welcher Schritt wann und warum lauft — bis das nachste Deployment
alles lahmlegt.

Der nachste Knackpunkt: Testautomatisierung. In CI/CD Pipelines sind
automatisierte Tests Pflicht — aber nur, wenn sie existieren und auch
wirklich durchlaufen. In zu vielen Projekten gibt es “Tests”, die nur Placebo
sind, weil sie entweder nie gewartet oder standig ubersprungen werden (“skip
tests, merge anyway”). Das Ergebnis: Die Pipeline ist grun, die Produktion
aber trotzdem kaputt.

Und dann ware da noch das Thema Rollbacks. In der Theorie ist ein Deployment
rickstandslos rickgangig zu machen. In der Praxis? Wenn uUberhaupt, dann nur
mit manuellen Notfallaktionen, weil die Pipeline weder State noch Datenbank
sauber zurickrollen kann. Fazit: Die CI/CD Pipeline ist kein Wundermittel,
sondern ein komplexes, fehleranfalliges Werkzeug. Wer sie nicht ernst nimmt,
riskiert Downtime, Chaos und Vertrauensverlust — intern wie extern.

Die grolSten Mythen uber CI/CD
Pipelines — und warum sie dich
nart abstrafen

Im Online-Marketing und in der Tech-Presse wird CI/CD gerne als Turbo fur
Innovation verkauft. “Setz ein paar Tools auf, und alles lauft von selbst!”
Die Realitat: CI/CD Pipelines sind kein Selbstlaufer, sondern komplexe
Gebilde, die bei schlechter Wartung zum groBRten Bremsklotz deines Projekts
werden. Zeit, mit den Mythen aufzuraumen.

Erster Mythos: “CI/CD spart immer Zeit.” Falsch. Eine schlecht konfigurierte
Pipeline kostet mehr Zeit als sie bringt. Jede Build-Fehlkonfiguration, jeder
nicht deterministische Test und jede unklare Deployment-Strategie verlangern
die Feedback-Schleifen und machen Fehler unauffindbar. Das berihmte “Works on
my machine” wird zur taglichen Ausrede, weil die Pipeline
Umgebungsunterschiede nicht abbildet.

Zweiter Mythos: “Ein Tool reicht, der Rest ist Magic.” Auch falsch. Jenkins,
GitLab CI oder GitHub Actions l6sen keine strukturellen Probleme. Wenn du am
Prozess nichts anderst, bleibt die Pipeline ein Flickwerk. CI/CD ist eine
Prozessfrage — kein Tool-Problem. Wer das nicht versteht, wird mit jeder
neuen Technologie mehr Chaos produzieren.

Dritter Mythos: “Continuous Deployment ist immer das Ziel.” Nein. Fur viele
Teams ist Continuous Delivery, also das automatisierte Bereitstellen bis zur
Staging-Umgebung, der bessere Weg. Nicht jede Anderung muss sofort in die
Produktion. Ohne ausreichende Tests, Monitoring und Ruckroll-Strategien ist



jeder Automatismus ein potenzieller Todeskandidat fir deine Applikation.

Vierter Mythos: “CI/CD Pipelines sind einmal eingerichtet, dann laufen sie
fiir immer.” Willkommen in der Realit&t: Jede Anderung am Tech-Stack, jeder
neue Service, jede API-Anderung kann eine funktionierende Pipeline sofort
killen. Ohne kontinuierliche Wartung, Monitoring und Refactoring ist deine
Pipeline schneller veraltet als du “Build failed” sagen kannst.

So sieht eine moderne CI/CD
Pipeline 1n der Praxis aus:
Tools, Ablaufe, echte Probleme

Die perfekte CI/CD Pipeline gibt es nicht — nur die, die heute fehlerfrei
lauft. In der Praxis sind CI/CD Pipelines eine Verkettung spezialisierter
Tools, Skripte und Workflows, die standig angepasst werden mussen. Der
typische Ablauf sieht so aus:

e Code wird via Pull Request ins zentrale Repository gemergt

e Automatisierte Unit- und Integrationstests laufen an

e Build-Prozess beginnt: Artefakte werden gebaut, Container Images
erstellt

e Statische Code-Analyse pruft auf Security und Style-Guides

Deployment in Staging-Umgebung, weitere Tests (E2E, Smoke Tests)

Automatisiertes oder manuelles Approval fur das Produktions-Deployment

Deployment in Produktion, ggf. mit Blue-Green oder Canary Release

Monitoring, Logging und Alerting laufen automatisiert an

Das Problem: In der Realitat sind diese Schritte selten konsistent
implementiert. 0ft fehlen Tests oder werden ubersprungen, Artefakt-Management
ist chaotisch, und der “Deploy to Production”-Button ist ein russisches
Roulette. Security-Scans werden ignoriert, weil sie zu viele False Positives
liefern, und das Monitoring ist oft nur eine Scheinldsung, die im Ernstfall
keine brauchbaren Alerts liefert.

Typische Probleme in der Praxis sind:

e Tests, die flakey sind und unzuverlassige Ergebnisse liefern

e Pipeline-Schritte, die voneinander abhangen, aber nicht sauber
versioniert sind

e Inkompatible Umgebungen (Staging # Production)

e Fehlende oder zu spate Feedback-Loops — Fehler werden erst nach Stunden
entdeckt

e Manuelle Eingriffe, die Automatisierung ad absurdum fihren

Der Alltag mit CI/CD Pipelines ist kein Spaziergang. Jeder neue Service,
jedes neue Feature, jede Infrastrukturanderung kann alles ins Wanken bringen.
Wer nicht permanent nachjustiert und automatisiert, wird irgendwann von der
eigenen Pipeline Uberrollt.



Testautomatisierung und
Infrastructure as Code: Die
unterschatzten Saulen der
CI/CD Pipeline

Testautomatisierung ist das Fundament jeder brauchbaren CI/CD Pipeline. Ohne
automatisierte Tests ist jede Pipeline nur ein glorifizierter Copy-Job. In
der Praxis scheitert das aber oft an fehlender Testabdeckung, mangelhaften
Testdaten und instabilen Testumgebungen. Unit-Tests, Integrationstests, End-
to-End-Tests — sie alle missen automatisiert laufen, deterministisch sein und
echte Fehler aufdecken. Alles andere ist Augenwischerei.

Doch selbst die besten Tests bringen wenig, wenn die Infrastruktur nicht
versioniert und automatisiert ist. Hier kommt Infrastructure as Code (IaC)
ins Spiel. Tools wie Terraform, Ansible oder Pulumi ermdéglichen es,
Infrastruktur als Code zu definieren und per Pipeline auszurollen. Das
verhindert “Schneeflocken-Server”, die nur durch Handarbeit existieren, und
sorgt fur Konsistenz zwischen Dev, Staging und Production.

Die Praxis zeigt aber: Viele Teams scheuen den initialen Aufwand fur IaC oder
bauen halbgare Ldsungen, die mehr Probleme verursachen als ldsen. Typische
Fehler:

e Unversionierte Infrastrukturanderungen, die im Notfall nicht rickgangig
zu machen sind

e Manuelle Workarounds, die die IaC-Logik aushebeln

e Fehlende Testumgebungen fiir Infrastruktur-Code — Anderungen werden
direkt in Produktion getestet

Wer Testautomatisierung und IaC nicht ernst nimmt, torpediert die eigenen
CI/CD Bemihungen. Die Folge: Fehlerhafte Deployments, Sicherheitslicken und
ein Operations-Team, das irgendwann die Reifleine zieht.

Schritt-fur-Schritt: So baust
du eine robuste CI/CD Pipeline
im Alltag

CI/CD Pipeline in der Praxis heillt: Prozesse, Tools und Team-Disziplin. Wer
glaubt, mit ein bisschen Jenkins oder GitLab CI sei es getan, landet schnell
in der Maintenance-HOolle. Hier ein bewahrter Ablauf, wie du eine robuste
CI/CD Pipeline Schritt flr Schritt aufbaust:



1. Source Code Management klar definieren

Nutze ein zentrales Git-Repository (z.B. GitHub, GitLab). Setze auf
Feature-Branches, Pull Requests und klare Review-Regeln. Ohne Disziplin
im SCM ist jede Pipeline nur Stuckwerk.

2. Automatisierte Tests aufbauen
Implementiere Unit-Tests, Integrationstests, End-to-End-Tests. Lass sie
bei jedem Commit automatisch laufen. Akzeptiere keine “roten” Builds.

3. Build-Prozess automatisieren
Nutze Build-Tools (z.B. Maven, Gradle, npm, Docker). Erstelle
reproduzierbare Artefakte, versioniere sie und lagere sie zentral (z.B.
Artifactory, Nexus).

4. Statische Code-Analyse integrieren
Tools wie SonarQube, ESLint oder Snyk prufen Codequalitat und
Sicherheitslicken. Mach sie zum Pflichtteil der Pipeline.

5. Infrastructure as Code einsetzen
Definiere Infrastruktur mit Terraform, Ansible oder ahnlichen Tools.
Roll Anderungen lber die Pipeline aus, nie manuell.

6. Deployment-Strategie festlegen
Automatisiere Deployments mit Blue-Green, Canary oder Rolling Release.
Vermeide Downtime und ermégliche schnelle Rollbacks.

7. Monitoring und Logging automatisieren
Nutze Tools wie Prometheus, Grafana, ELK-Stack oder Datadog. Alerts
missen bei Fehlern sofort ankommen — nicht erst, wenn der Kunde anruft.

8. Security-Scans integrieren
Automatisiere Dependency-Checks, Container-Scans und Secrets-Scanning.
Security ist kein optionales Add-on.

9. Rollback-Mechanismen testen
Stelle sicher, dass Deployments reversibel sind. Teste Rollbacks
regelmaBig — nicht erst im Ernstfall.

10. Feedback-Loops und Team-Kommunikation starken
Fehler missen sichtbar sein. Stelle sicher, dass alle Beteiligten
Alerts, Logs und Status kennen. CI/CD ist Teamarbeit.

Wer diese Schritte ignoriert, baut keine CI/CD Pipeline — sondern eine
Zeitbombe mit Countdown. Wer sie befolgt, bekommt eine belastbare,
skalierbare Prozesskette, die Innovation moglich macht.

Security, Monitoring,
Rollbacks: Die Essentials, die
im Alltag gerne ignoriert
werden

Die meisten CI/CD Pipelines scheitern nicht an der Automatisierung, sondern
an den Basics: Security, Monitoring und Ruckroll-Strategien. In der Praxis
werden diese Themen aus Zeitdruck oft stiefmutterlich behandelt — mit fatalen
Folgen.



Security: Jede Pipeline ist ein potenzieller Angriffsvektor. Secrets in
Build-Logs, ungesicherte Artefakt-Repositories, fehlende Zugangskontrollen —
die Liste ist lang. Wer Security nicht von Anfang an einbaut, ladt zum
Einbruch ein. Tools wie HashiCorp Vault, GitHub Secrets oder GitLab CI
Variables sind Pflicht.

Monitoring: Was nicht Uberwacht wird, existiert nicht. Ohne Monitoring und
Logging ist jedes Deployment ein Blindflug. Automatisierte Alerts, Dashboards
und Log-Analysen mussen Standard sein. Nur so erkennst du Fehler, bevor sie
die Nutzer treffen.

Rollbacks: Jede Pipeline muss in der Lage sein, fehlerhafte Deployments
schnell rickgangig zu machen. Das gilt fir Code, Datenbanken und
Infrastruktur. Rollback-Skripte, Datenbank-Migrationstools und Feature-
Toggles sind kein Luxus, sondern Uberlebensstrategie. Teste Rollbacks
regelmaBig, sonst stehst du im Ernstfall ohne Netz da.

Wer diese Essentials ignoriert, riskiert nicht nur die eigene Reputation,
sondern die Existenz des Produkts. CI/CD ist kein Sprint, sondern permanentes
Risikomanagement.

Fazit: CI/CD Pipeline Praxis —
Ohne Disziplin keine
Innovation

CI/CD Pipeline Praxis ist kein Buzzword fir Tech-Konferenzen, sondern
tagliche, harte Arbeit. Die Wahrheit: Ohne Disziplin, Teamwork und permanente
Anpassung ist jede Pipeline nur ein weiteres Tool, das mehr Probleme schafft
als lost. Wer glaubt, mit ein bisschen Automation und ein paar Tests sei es
getan, wird im Alltag bdse uberrascht.

Die gute Nachricht: Wer Prozesse, Testautomatisierung, IaC, Security und
Monitoring ernst nimmt, gewinnt Geschwindigkeit, Qualitat und Sicherheit. Die
schlechte: Es gibt keinen Shortcut. CI/CD ist ein fortlaufender Prozess, der
nur so gut ist wie das schwachste Glied im Team. Wer das akzeptiert — und
lebt — hat im digitalen Wettbewerb die Nase vorn. Alle anderen? Werden
gnadenlos abgehangt.



