CI/CD Pipeline Stack
Overview: Technik kompakt
erklart

Category: Tools
geschrleben von Toblas_Hager | 15. August 2025

L]
i)

LT

]
\y

il ;HI Eq *
il
]

@ —
I!_‘H—-_‘--_

=

[NE

(LI

—

CI/CD Pipeline Stack
Overview: Technik kompakt
erklart

CI/CD ist das neue “Mobile First” — alle reden dariber, niemand versteht es
wirklich. Wer seine Deployment-Pipelines 2025 noch wie vor zehn Jahren
aufzieht, kann sich gleich ein Faxgerat ins Buro stellen. Hier kommt der
kompromisslose Deep Dive in die Welt der CI/CD Pipeline Stacks: Von DevOps-
Mythen, YAML-Horror und Docker-Alptraumen bis zu Kubernetes, Monitoring und
Security-by-Design. Was wirklich zahlt, warum die meisten Projekte an banaler
Technik scheitern — und wie du mit dem richtigen Stack alles automatisierst,
was nicht bei drei auf dem Server ist. Zeit fur technisches Klartext-
Marketing — willkommen im Maschinenraum moderner Softwareentwicklung.

https://404.marketing/cicd-pipeline-stack-2025/
https://404.marketing/cicd-pipeline-stack-2025/
https://404.marketing/cicd-pipeline-stack-2025/

e CI/CD Pipelines sind das Rickgrat moderner Softwareentwicklung und
entscheidend fir Geschwindigkeit, Qualitat und Skalierbarkeit

e Ein CI/CD Pipeline Stack umfasst Build, Test, Deployment,
Automatisierung, Monitoring und Security — jeder Layer ist kritisch

e Tools wie Jenkins, GitLab CI, GitHub Actions, CircleCI, Travis CI und
Azure DevOps bestimmen den Workflow und die Flexibilitat

e Containerization mit Docker und Orchestrierung via Kubernetes sind
langst Standard — wer hier schwachelt, verliert den Anschluss

e Infrastructure as Code (IaC) mit Terraform, Ansible, Puppet oder Chef
ist Pflicht, nicht Kur

e Security, Monitoring und Rollbacks sind keine “Add-ons”, sondern
essentielle Bestandteile jeder produktionsreifen Pipeline

e Fehlerhafte Pipelines kosten echte Zeit, Geld und Reputation — und
werden oft durch falsche Tool-Auswahl oder schlampige Konfiguration
verursacht

e Schritt-fur-Schritt: Wie du eine skalierbare, sichere und wartbare CI/CD
Pipeline stackst

e Die groBten Mythen, Irrtumer und Zeitfresser im CI/CD Umfeld — und wie
du sie proaktiv eliminierst

e Fazit: Wieso kein Team ohne CI/CD Stack 2025 noch konkurrenzfahig ist -
und wie du den Tech-Schulden entkommst

CI/CD Pipelines haben sich vom nice-to-have zum absoluten Muss entwickelt.
Wer 2025 noch manuell deployed, kann sich gleich ein Ticket fur die digitale
Steinzeit buchen. Der CI/CD Pipeline Stack ist das technologische Gerist, das
entscheidet, ob du Features in Stunden oder in Wochen shipst, wie viele Bugs
du in Produktion schiebst und ob dein DevOps-Team nachts schlafen kann oder
Pager-Duty-Trauma entwickelt. Was als simple Automatisierung von Build und
Deployments begann, ist heute ein komplexes Okosystem aus Tools, Standards
und Best Practices, das tief in Codequalitat, Sicherheit und Skalierbarkeit
eingreift. Und wie uberall im Tech-Bereich: Wer die Grundlagen nicht
beherrscht, verliert — sichtbar, messbar und gnadenlos.

Dieser Artikel zerlegt den CI/CD Pipeline Stack bis auf die letzte Variable.
Wir reden nicht uUber Marketing-Phrasen, sondern uUber die echten technischen
Herausforderungen, die du 1ldésen musst, wenn du mit deiner Software nicht
baden gehen willst. Von der Build Chain lber automatisierte Tests,
Infrastructure as Code, Containerisierung, Deployment-Strategien bis zu
Security und Monitoring. Wir zeigen dir, wie du den perfekten Stack aufbaust,
wo die Stolperfallen lauern und welche Tools wirklich liefern — und welche
dich nur Zeit kosten.

Vergiss die “Continuous Everything”-Powerpoints. Hier geht es um YAML-Files,
Container-Registry-Probleme, Rollback-Strategien und das knallharte
Zusammenspiel von Git, Cloud, Orchestrierung und Security. Am Ende dieses
Artikels weillt du, wie du eine CI/CD Pipeline stackst, die schneller shipped
als die Konkurrenz, weniger Fehler produziert und dich vor den typischen
Tech-Debakeln bewahrt. Willkommen in der Welt der echten Automatisierung.
Willkommen bei 404.

Was 1st eine CI/CD Pipeline? —
Definition, Stack und
Bedeutung fur modernes DevOps

Fangen wir mit den Basics an: CI/CD steht fir Continuous Integration und
Continuous Delivery (oder Deployment). Klingt nach Buzzword-Bingo, ist aber
die entscheidende Grundlage fir jede moderne Softwareentwicklung. Continuous
Integration heiBt, dass Code-Anderungen kontinuierlich in ein zentrales
Repository gemerged, automatisch gebaut und getestet werden. Continuous
Delivery bzw. Deployment geht noch weiter: Die getesteten Artefakte werden
automatisiert in produktionsnahe Umgebungen oder direkt in die Produktion
ausgeliefert. Der CI/CD Pipeline Stack bezeichnet die Gesamtheit aller Tools,
Prozesse und Technologien, die diese Ablaufe automatisieren, kontrollieren
und absichern.

Ein typischer CI/CD Pipeline Stack besteht aus mehreren Layern. Ganz unten
sitzt das Quellcode-Repository (Git, Subversion — wobei Git heute quasi
gesetzt ist). Darauf folgt die Automatisierungsebene mit Tools wie Jenkins,
GitLab CI, GitHub Actions oder CircleCI. Uber diese orchestrierst du Builds,
Tests und Deployments. Containerization (meist Docker) und Orchestrierung
(Kubernetes, OpenShift) sind fester Bestandteil, wenn du skalierbare
Deployments willst. Infrastructure as Code mit Terraform, Ansible oder
ahnlichen Tools sorgt daflir, dass Infrastruktur wie Server, Netzwerke oder
Loadbalancer programmatisch und wiederholbar bereitgestellt werden.
Monitoring, Logging und Security sind die uUbergeordneten Layer, auf denen die
Stabilitat und Sicherheit deiner gesamten Pipeline fuft.

Warum ist ein sauberer CI/CD Pipeline Stack heute so wichtig? Weil
Geschwindigkeit, Qualitat und Skalierbarkeit ohne Automatisierung nicht mehr
moglich sind. Wer manuell deployed, verliert Wochen, produziert Fehler und
kann auf Security-Incidents eigentlich nur noch warten. Automatisierte
Pipelines sorgen dafir, dass jeder Commit sauber getestet, gebaut und
ausgeliefert wird — und das reproduzierbar, nachvollziehbar und schnell. Im
Endeffekt entscheidet dein CI/CD Stack daruber, wie wettbewerbsfahig du bist.
Punkt.

Im Jahr 2025 ist CI/CD kein Luxus mehr, sondern Grundvoraussetzung. Wer hier
mit halbgaren Scripts, veralteten Jenkins-Jobs oder handgestrickten
Deployments arbeitet, riskiert nicht nur technische Schulden, sondern auch
Sicherheitslicken und Downtimes. Ein moderner CI/CD Pipeline Stack ist
hochgradig modular, skalierbar und auf Automatisierung getrimmt. Alles andere
ist digitaler Selbstmord.

Die wichtigsten Komponenten 1im
CI/CD Pipeline Stack — Tools,
Standards und Best Practices

Was gehort alles zu einem vollstandigen, produktionsreifen CI/CD Pipeline

Stack? Wer glaubt, dass ein bisschen Shell-Scripting reicht, sollte besser
gleich weiterblattern. Hier die zentralen Komponenten, die in keinem Stack
fehlen dirfen — und warum sie kritisch sind:

e Quellcodeverwaltung (Source Control): Ohne Git keine Pipeline.
Branching, Pull Requests, Merge Policies — alles, was CI/CD antreibt,
beginnt hier.

e Automatisierungstools: Jenkins, GitLab CI, GitHub Actions, Circle(CI,
Travis CI, Azure DevOps. Sie orchestrieren Builds, Tests,
Artefakterzeugung und Deployments.

e Build-Systeme: Maven, Gradle, npm, yarn, Make, Bazel. Sie erzeugen aus
Code lauffahige Artefakte (z.B. JARs, Docker Images, Binaries).

e Testing: Unit, Integration, E2E, Security und Performance Tests —
automatisiert und als obligatorischer Teil jeder Pipeline.

e Containerization: Docker ist Standard. Ohne Containerisierung keine
reproduzierbaren Builds, keine schnellen Deployments, kein Scaling.

e Orchestrierung: Kubernetes, OpenShift, Docker Swarm. Sie verwalten,
skalieren und lberwachen deine Deployments auf Cluster-Level.

e Infrastructure as Code (IaC): Terraform, Ansible, Puppet, Chef — sorgen
fur Konsistenz, Wiederholbarkeit und Versionierbarkeit deiner
Infrastruktur.

e Monitoring & Logging: Prometheus, Grafana, ELK/EFK Stack (Elasticsearch,
Logstash/Fluentd, Kibana), Datadog, Sentry. Ohne Monitoring bist du
blind.

e Security & Compliance: SAST, DAST, Dependency-Checker, Secrets-Scanning,
Policy-Enforcement. Security darf nie “spater” kommen.

Der CI/CD Pipeline Stack ist ein Okosystem, bei dem jedes Glied z&hlt.
Fehlkonfiguration in nur einer Komponente kann den gesamten Deployment-
Prozess gefahrden. Typische Fehler: Jenkins mit Admin-Default-User exposed
ins Internet, Docker Images mit sensiblen Umgebungsvariablen, oder
Kubernetes-Cluster ohne RBAC-Kontrolle. Wer hier nicht up-to-date ist, wird
zum Lieblingsziel von Script-Kiddies und Ransomware-Bots.

Best Practices? Automatisiere alles, was repetitiv ist. Versioniere jede
Konfiguration. Baue deine Pipeline so, dass sie reproduzierbar und portabel
ist. Und: Schreibe deine YAML-Files so, dass sie auch in drei Monaten noch
verstandlich sind — sonst hast du ein Wartungsproblem der ubelsten Sorte.

Was du vermeiden solltest: Tool-Zoo ohne Plan, Copy-Paste-Configs aus Stack
Overflow und Security-by-Obfuscation. Wer auf diesen Wegen unterwegs ist,
baut sich einen technischen Schuldenberg, den niemand mehr abtragen will.

CI/CD Pipeline Stack 1im
Detail: Von Build bis
Deployment — Schritt fur
Schritt

Ein CI/CD Pipeline Stack ist mehr als eine Aneinanderreihung von Tools. Es
ist ein orchestrierter, durchdachter Workflow, der von Commit bis Deployment
alles abdeckt. So sieht das Ganze in der Praxis — technisch und kompromisslos
— aus:

e 1. Source Commit: Entwickler pushen Code in ein zentrales Git-Repository
(GitHub, GitLab, Bitbucket). Branch Policies und Pull Requests sorgen
fir Codequalitat und Review-Prozesse.

e 2. Build Trigger: Jeder Commit oder Merge triggert automatisch einen
Build. Das passiert per Webhook oder native Integration im CI-Tool (z.B.
GitHub Actions Workflows).

e 3. Static Code Analysis: Tools wie SonarQube oder CodeClimate prufen
Codequalitat, Style, Security und technische Schulden — bevor Uberhaupt
gebaut wird.

e 4, Build & Artefakterstellung: Das Build-System erzeugt aus dem
Quellcode das Deployable (JAR, Docker Image, Binary). Build-Cache und
Dependency-Management beschleunigen den Prozess.

e 5. Testing Pipeline: Mehrstufige Tests laufen automatisiert ab: Unit-
Tests, Integrationstests, E2E-Tests, statische Security-Checks. Failed
Tests? Kein Deployment.

e 6. Containerization & Registry: Docker Images werden gebaut und in eine
private Registry (Docker Hub, GitLab, Azure Container Registry) gepusht.
Tagging und Versionierung sind Pflicht.

e 7. Deployment Automation: Mit Tools wie ArgoCD, Helm (fur Kubernetes),
Ansible oder klassischen Bash Scripts wird die Applikation in die
Zielumgebung deployed — vollautomatisch.

e 8. Infrastructure Provisioning: IaC-Tools wie Terraform oder
CloudFormation stellen Cloud-Ressourcen, Cluster, Datenbanken oder
Queues bereit — nachprifbar und versioniert.

¢ 9. Monitoring & Alerting: Nach dem Deployment werden Metriken und Logs
automatisch gesammelt, Dashboards erstellt, Alerts bei Fehlern oder
Thresholds ausgeldst.

¢ 10. Rollbacks und Blue/Green Deployments: Fehlerhafte Deployments werden
automatisiert zurickgerollt, Downtimes durch strategische Deployment-
Pattern (Canary, Blue/Green) minimiert.

Jede Stufe im CI/CD Pipeline Stack kann zum Single Point of Failure werden.
Ein falsch gesetzter Build-Trigger, ein nicht getestetes YAML-File, oder ein
vergessener Secrets-Scan — und schon steht die Produktion still oder du
schiebst Sicherheitslucken live. Deshalb gilt: Automatisiere, priufe, monitor
— und wiederhole den Zyklus standig.

Ein ausgereifter CI/CD Pipeline Stack ermdglicht es Teams, Feature Branches
in Stunden statt Tagen zu deployen, Fehler frih zu erkennen und Infrastruktur
genauso versionierbar zu machen wie Code. Das ist der Unterschied zwischen
DevOps-Hype und echtem Delivery-Exzellenz.

Die meisten Katastrophen passieren ubrigens nicht beim Coding, sondern im
Zusammenspiel der Pipeline-Komponenten. Wer einmal einen Docker Registry
Outage wahrend des Deployments erlebt hat, weill, wie schnell die Lichter
ausgehen. Deshalb: Redundanz, Monitoring und Recovery-Strategien gehdren von
Anfang an in den Stack.

Security, Monitoring und
Fehlerkultur: Warum CI/CD ohne
diese Layer brennt

Wer CI/CD sagt, muss auch Security sagen. Und zwar nicht als “Add-on”,
sondern als inharenten Teil des Stacks. Die Zahl kompromittierter Supply
Chains ist 2024/2025 explodiert — und fast immer sind es schlampig
konfigurierte Pipelines, die Angreifern Tir und Tor 6ffnen. Secrets im
Klartext, ungeschitzte Artefakt-Repositories, fehlende Policy Enforcement —
die Liste ist endlos. Security-Scanning (SAST, DAST, Dependency Checks) muss
in jede Pipeline, und zwar obligatorisch.

Monitoring ist der zweite unverzichtbare Layer im CI/CD Pipeline Stack. Wer
nicht weiR, wie Builds laufen, wie viele Deployments fehlschlagen oder welche
Security-Scans anschlagen, tappt im Dunkeln. Dashboards, Alerting, Tracing
und Log-Analyse (Prometheus, Grafana, ELK/EFK, Sentry) gehdren zum
Pflichtprogramm. Fehlerkultur ist nicht, Fehler zu ignorieren, sondern sie
sichtbar und reproduzierbar zu machen. Jede Pipeline muss Logging und
Alerting von Anfang an implementieren — sonst fliegen Fehler erst auf, wenn
die Kunden im Chat Support stehen.

Ein unterschatztes Risiko: Rollback-Strategien. Wer keine automatisierten
Rollbacks oder Blue/Green Deployments nutzt, riskiert Downtime und
Datenverlust. Die besten Teams planen Fehler ein, bauen Recovery-Prozesse und
testen regelmaBig, ob sie im Ernstfall wirklich funktionieren. Wer das nicht
macht, wird zum Zuschauer beim eigenen Produktionsausfall.

Security, Monitoring und Fehlerkultur sind die Versicherungen gegen das
Unvermeidliche: Fehler passieren. Die Frage ist nur, wie schnell du sie
findest, wie klein du sie haltst — und wie automatisiert du darauf reagierst.
Wer hier spart, spart am falschen Ende und zahlt spater mit Zinsen.

Step-by-Step: So baust du
einen skalierbaren, sicheren
CI/CD Pipeline Stack

CI/CD ist kein Projekt, sondern ein fortlaufender Prozess. Jedes Team, jede
Applikation, jede Infrastruktur ist anders. Dennoch gibt es einen bewahrten
Ablauf, um einen robusten CI/CD Pipeline Stack zu bauen. Hier die Schritt-
far-Schritt-Anleitung fir echte Profis:

e 1. Stack-Analyse & Zieldefinition: Welche Programmiersprachen,
Frameworks, Cloud-Plattformen und Sicherheitsanforderungen? Klare Ziele
verhindern spatere Tool-Wildwuchs.

e 2. Source Control einrichten: Git-Repository mit Branch Policies und
Protected Branches. Pull Requests und Reviews sind Pflicht.

e 3. CI/CD Tool auswahlen: Entscheide dich fir den passenden Orchestrator
(Jenkins, GitLab CI, GitHub Actions, CircleCI). Automatisiere Build,
Test, Deployment.

e 4, Build Pipeline definieren: Lege Build-Jobs, Caching, Artefakt-
Versionierung und Parallelisierung fest. Baue reproduzierbare Docker
Images.

e 5. Testing automatisieren: Integriere alle Testarten: Unit, Integration,
E2E, Security. Tests missen Blocking sein.

e 6. Containerisierung & Registry: Nutze Docker, sichere Images mit
Scanning, versioniere konsequent. Setze eine Private Registry auf.

e 7. Infrastructure as Code aufsetzen: Terraform, Ansible oder
CloudFormation zum Provisionieren und Versionieren der Infrastruktur
nutzen.

e 8. Deployment Automation: Wahle Kubernetes, Helm, ArgoCD oder klassische
Automatisierung. Setze auf Zero-Downtime-Pattern (Canary, Blue/Green).

¢ 9. Monitoring & Alerting integrieren: Prometheus, Grafana, ELK/EFK,
Sentry fir Metriken, Logs, Tracing und Alerts einbinden.

e 10. Security Layer implementieren: Secrets-Management, SAST/DAST, Policy
Enforcement — alles automatisiert und verpflichtend im Pipeline-Flow.

e 11. Rollback- und Recovery-Prozesse testen: Notfallplane regelmafig
durchspielen. Rollbacks automatisieren und dokumentieren.

e 12. Dokumentation & Wartung: Jede Pipeline, jedes Script, jede Variable
dokumentieren. Automatisiere Dokumentations-Updates, um Tech-Schulden zu
vermeiden.

Jeder Schritt baut auf dem vorherigen auf. Wer abkiirzt, zahlt spater — mit
Ausfallen, Sicherheitsliicken oder unwartbaren YAML-Monstern. Iteriere
regelmaBig, halte den Stack schlank, prife neue Tools kritisch und vermeide
jeden Overhead, der keinen echten Mehrwert bringt.

CI/CD ist niemals “fertig”. Neue Technologien, neue Security-Vorgaben, neue
Teams — dein Stack muss anpassbar und modular bleiben. Wer das ignoriert,
landet bei der nachsten Migration im kompletten Rewrite-Chaos.

Die grofSten Mythen,
Fehlerquellen und Tech-

Schulden im CI/CD Stack — und
wie du sie killst

CI/CD Pipelines sind kein Selbstlaufer. Die meisten Projekte scheitern nicht
an Technik, sondern an schlechter Planung, unkoordinierten Tools und
fehlender Fehlertoleranz. Hier die funf grofften Mythen — und wie du sie
direkt eliminierst:

e “Jenkins reicht, der Rest ist Luxus”: Falsch. Ohne moderne Security,
Containerisierung und IaC ist Jenkins nur ein Relikt aus der Vor-
Kubernetes-Zeit. Die Kombination macht den Stack.

e “Security machen wir spater”: Willkommen in der Realitat: Spater heift
nie. Security gehdrt von Anfang an in die Pipeline — oder du bist das
nachste Supply-Chain-Opfer.

e “YAML ist Dokumentation genug”: YAML-Files sind schnell unidbersichtlich,
fehleranfallig und schwer wartbar. Gute Dokumentation ist Pflicht, sonst
verlierst du in drei Monaten den Uberblick.

e “Monitoring ist nur fur Ops”: Wer Monitoring auf Produktion beschrankt,
merkt Fehler erst, wenn sie beim Kunden ankommen. Monitoring und Logging
gehdren in jede Stufe der Pipeline.

e “Rollbacks brauchen wir nicht — wir deployen nur, wenn alles passt”:
Traum weiter. Fehler passieren immer. Wer nicht automatisiert
zuruckrollen kann, hat den Ernstfall nie verstanden.

Die Technik ist nicht das Problem, es sind die Prozesse, die Integration und
der fehlende Mut, alte Zopfe abzuschneiden. Wer Tool-Zoo, Copy-Paste-
Konfigurationen und fehlende Security zulasst, baut Tech-Schulden, die
exponentiell wachsen. Die einzigen Auswege: Automatisierung, Transparenz,
kontinuierliche Wartung und ein Stack, der modular und dokumentiert bleibt.

Jede Pipeline ist nur so stark wie ihr schwachstes Glied. Prufe regelmallig,
wo du Abhangigkeiten, Redundanzen und Sicherheitslicken hast. Und: Plane fir
den Ausfall — nicht fur den Idealfall. Nur so Uberlebst du den nachsten
Outage ohne Karriereende.

CI/CD ist kein Selbstzweck. Es ist die Lebensversicherung fur jede
Applikation, jedes Team und jeden Kunden, der Verlasslichkeit erwartet. Wer
das begriffen hat, baut Stacks, die wirklich skalieren und im Ernstfall
liefern.

Fazit: CI/CD Pipeline Stack —
der einzige Weg zu
skalierbarer, sicherer und
moderner Softwareentwicklung

CI/CD Pipelines sind 2025 keine Spielerei mehr, sondern die absolute
Voraussetzung fur jeden, der im digitalen Geschaft ernsthaft mitspielen will.
Ein sauberer, durchdachter CI/CD Pipeline Stack ist das Fundament fur
Geschwindigkeit, Qualitat, Sicherheit und Skalierbarkeit. Wer hier schlampt,
produziert nicht nur technische Schulden, sondern gefahrdet seine gesamte
Wertschopfungskette. Von der Automatisierung Uber Containerisierung bis zu
Security und Monitoring — jeder Layer zahlt und muss perfekt aufeinander
abgestimmt sein.

Die Realitat ist brutal: Wer seine Deployments noch mit Bash-Scripts, FTP
oder manuellen Freigaben managt, ist schon heute aus dem Rennen. Die
Konkurrenz shipped Features in Stunden, rollt fehlerfrei zurick und schlaft
nachts ruhig. Mit dem richtigen CI/CD Pipeline Stack bist du schneller,
sicherer und besser skalierbar — und deine DevOps-Teams haben endlich Zeit
far Innovation statt fur Firefighting. Die Zukunft ist automatisiert. Und sie
wartet nicht auf Nachzugler. Willkommen bei 404.

