
CI/CD Pipeline Vergleich:
Die besten Tools im Check
Category: Tools
geschrieben von Tobias Hager | 16. August 2025

CI/CD Pipeline Vergleich:
Die besten Tools im Check
Du willst schnell deployen, deine Entwickler nicht mit stumpfsinnigen
Routinejobs quälen und Continuous Delivery wirklich leben? Dann brauchst du
nicht irgendein CI/CD-Tool, sondern das richtige. Willkommen beim großen
CI/CD Pipeline Vergleich – wo wir die besten Tools gnadenlos
auseinandernehmen, Mythen killen und dir zeigen, welches System 2025 wirklich
performt. Zeit, den DevOps-Mistkerl in dir zu wecken – langweilige Tool-
Listen findest du woanders.

Was ist eine CI/CD Pipeline – und warum kein moderner Software-Stack
ohne sie auskommt
Die wichtigsten Bewertungskriterien für CI/CD Tools im Jahr 2025
GitHub Actions, GitLab CI, Jenkins, CircleCI & Co. im direkten Vergleich
Was Open-Source-Tools wirklich können – und wo sie gnadenlos scheitern
Wie Security, Skalierbarkeit und Integrationen das Rennen entscheiden
Was du beim Thema Kosten, Wartung und Cloud vs. On-Premises wirklich

https://404.marketing/cicd-pipeline-vergleich-2025/
https://404.marketing/cicd-pipeline-vergleich-2025/


wissen musst
Step-by-Step: So wählst du die richtige CI/CD Pipeline für deinen Tech-
Stack
Warum der Hype um “NoOps” Quatsch ist – und Automatisierung trotzdem
Pflicht bleibt
Fazit: CI/CD Pipeline Vergleich 2025 – welche Lösung passt wirklich zu
dir?

Die Zeiten, in denen Entwickler nach jedem Commit auf Knien gebetet haben,
dass das Deployment nicht explodiert, sind vorbei – oder sollten es sein.
CI/CD Pipelines sind heute das Rückgrat moderner Softwareentwicklung. Aber:
Der Markt ist voll von Anbietern, die alle das Rad neu erfinden wollen.
Jenkins, GitHub Actions, GitLab CI, CircleCI, Travis – jeder verspricht
Continuous Integration und Continuous Delivery wie von Zauberhand. Doch was
davon taugt wirklich? Und wo verbrennst du nur Zeit, Nerven und Budget?
Dieser CI/CD Pipeline Vergleich trennt die Spreu vom Weizen. Wir gehen
technisch in die Tiefe, führen dich durch die wichtigsten Features,
Benchmarks und Fallstricke. Am Ende weißt du: Mit welchem Tool du baust,
testest, deployst – und nicht untergehst.

CI/CD Pipelines sind keine nette Spielerei, sondern der elementare Baustein
für schnelle, sichere und wiederholbare Software-Releases. Wer hier
schludert, zahlt doppelt: mit technischen Schulden, manuellem Aufwand,
Sicherheitslücken und frustrierten Entwicklern. 404 Magazine zeigt dir, warum
du heute keine Ausreden mehr hast – und wie du die perfekte CI/CD Lösung
auswählst.

Was ist eine CI/CD Pipeline –
und warum brauchst du sie
jetzt?
Fangen wir mit dem Grundsatz an: CI/CD steht für Continuous Integration und
Continuous Delivery (oder Deployment). Eine CI/CD Pipeline ist nichts anderes
als eine automatisierte Prozesskette, die Code nach dem Commit baut, testet
und in verschiedenen Stages bis zur Produktion ausrollt. Klingt einfach, ist
aber technisch eine der komplexesten Disziplinen im DevOps-Universum.

Continuous Integration bedeutet, dass jeder Code-Change direkt in den
Hauptzweig integriert und automatisiert getestet wird. Continuous Delivery
geht einen Schritt weiter: Nach bestandenen Tests wird der Code automatisch
bereitgestellt – und mit Continuous Deployment sogar gleich live geschaltet.
Das Ziel: Fehler frühzeitig erkennen, Releases beschleunigen, und die
menschliche Komponente auf ein Minimum reduzieren. Oder anders gesagt: Keine
Helden mehr im nächtlichen Serverraum, weil das Deployment wieder crashed.

Warum ist das so wichtig? Weil Software heute in immer kürzeren Zyklen
ausgeliefert werden muss. Wer monatelang an Releases schraubt, ist tot.
Kunden erwarten Updates im Wochen- oder Tagesrhythmus. CI/CD Pipelines



ermöglichen genau das – vorausgesetzt, sie sind sauber aufgesetzt und
integriert. Und hier trennt sich die Spreu vom Weizen: Zwischen “funktioniert
irgendwie” und “läuft wie ein Schweizer Uhrwerk” liegen Welten.

Im Jahr 2025 sind CI/CD Pipelines keine Option mehr, sondern Pflichtprogramm.
Wer sie ignoriert, riskiert nicht nur technische Schulden, sondern den
Anschluss an den Markt. Und weil die Tool-Auswahl gigantisch ist, brauchst du
knallharte Kriterien. Willkommen beim echten CI/CD Pipeline Vergleich.

Bewertungskriterien für CI/CD
Tools: Was zählt wirklich?
Wer sich schon mal durch die Marketing-Folien der großen CI/CD Anbieter
gewühlt hat, weiß: Jeder kann alles – angeblich. Doch in der Praxis
entscheidet sich der Wert eines Tools an harten Fakten. Im CI/CD Pipeline
Vergleich 2025 zählen vor allem diese Kriterien:

Skalierbarkeit: Wie performant läuft die Pipeline bei hunderten
gleichzeitigen Builds? Kann das Tool horizontal skalieren, oder stürzt
es schon bei 10 parallelen Deployments ab?
Pipeline-As-Code: Moderne CI/CD setzt auf deklarative Konfiguration
(z.B. YAML oder Groovy). Wer heute noch auf Klick-Klick-GUI setzt, hat
verloren.
Integrationsfähigkeit: Wie gut lassen sich externe Tools (Monitoring,
Security, Deployment-Targets) einbinden? Gibt es Standard-Plugins oder
ist alles Bastelarbeit?
Security & Compliance: Unterstützt das Tool Secrets Management, Policy
Enforcement und Audit Logs? Wie sieht es mit RBAC, SSO und Compliance-
Features aus?
Cloud vs. On-Premises: Muss die Pipeline in der Cloud laufen oder ist
ein Self-Hosted-Setup möglich? Wie flexibel ist das System für hybride
Umgebungen?
Community & Support: Gibt es eine aktive Community, regelmäßige Updates
und guten Support? Oder bist du nach dem Onboarding auf dich allein
gestellt?
Kosten: Ist das Tool Open Source, gibt es versteckte Kosten, wie sieht
das Preismodell bei steigendem Team- oder Build-Volumen aus?

Der CI/CD Pipeline Vergleich muss all diese Faktoren berücksichtigen – denn
nur so findest du das System, das jetzt und in Zukunft zu deinem Tech-Stack
passt. Und die Unterschiede sind massiv. Ein Tool wie Jenkins ist Open-
Source-König, aber komplex wie die Hölle. GitHub Actions verspricht Cloud-
Komfort, aber hat Limits. GitLab CI will alles können, CircleCI setzt auf
Geschwindigkeit. Wer hier nicht genau hinschaut, zahlt am Ende doppelt – mit
Downtime, Ärger und Migrationen.

Die Wahrheit: Es gibt kein “bestes” CI/CD Tool für alle. Aber es gibt eine
Menge schlechte. Und noch mehr, die nur unter ganz bestimmten Bedingungen
glänzen. Zeit, in die Details zu gehen.



Die großen Player im CI/CD
Pipeline Vergleich: GitHub
Actions, Jenkins, GitLab CI,
CircleCI & Co.
Wer 2025 eine CI/CD Pipeline aufsetzt, landet zwangsläufig bei einer Handvoll
Platzhirschen. Jeder bringt sein eigenes Ökosystem, seine Stärken und seine
Schwächen mit. Im direkten CI/CD Pipeline Vergleich schneiden nicht alle
gleich ab – und manche Tools sind schlichtweg ein Albtraum, wenn du nicht
genau weißt, was du tust.

Jenkins: Der Dinosaurier der CI/CD Welt. Open Source, endlos erweiterbar,
aber auch notorisch wartungsintensiv. Jenkins ist der Inbegriff von Pipeline-
As-Code (Groovy) und bietet dank tausender Plugins praktisch unbegrenzte
Möglichkeiten. Aber: Installation, Wartung und Security sind eine
Herausforderung. Wer Jenkins betreibt, braucht Know-how und Zeit. Für
komplexe Enterprise-Workflows ist Jenkins oft unschlagbar – für kleine Teams
aber overkill.

GitLab CI/CD: Integriert direkt in GitLab, setzt voll auf YAML-Konfiguration
und bietet von Haus aus eine vollständige DevOps-Plattform (CI, CD, SCM,
Container Registry, Security, Monitoring). GitLab CI läuft sowohl in der
Cloud als auch On-Premises. Der große Vorteil: Alles aus einer Hand, zentrale
Verwaltung, starke Community, exzellente Rechteverwaltung. Für Teams, die
sowieso mit GitLab arbeiten, oft die logische Wahl. Nachteil: Performance in
großen Self-Hosted-Setups kann schwächeln.

GitHub Actions: Die Cloud-native CI/CD Lösung von GitHub. Vollständig in den
GitHub-Workflow integriert, mit deklarativer Pipeline in YAML, Marketplace
für Actions und kostenlosem Einstieg. Ideal für Open Source und kleine bis
mittlere Projekte. Nachteile: Limits bei Build-Minuten, wenig Kontrolle über
Infrastruktur, und bei komplexen Deployments stößt das System schnell an
Grenzen. Für klassische Enterprise-Workflows und hybride Cloud-Deployments
oft zu schlank.

CircleCI: Cloud-First, aber auch On-Premises (Server) verfügbar. Bekannt für
Geschwindigkeit, einfache Konfiguration und eine breite Auswahl an
Integrationen. CircleCI überzeugt mit schnellem Spin-Up neuer Builds und
flexibler Ressourcensteuerung per YAML. Nachteile: Viele Features sind im
Free-Tier limitiert, und bei großen Teams wird es teuer. Proprietäre
Scripting-Syntax kann zur Hürde werden.

Travis CI: Lange Zeit Liebling der Open-Source-Szene, heute aber von GitHub
Actions und CircleCI überholt. Travis ist einfach zu konfigurieren, aber in
puncto Performance, Integrationen und Security schwächer aufgestellt. Für
kleine, private Projekte okay – für professionelle Workflows nicht mehr



konkurrenzfähig.

Die Auswahl ist damit keineswegs erschöpft. Es gibt weitere Tools wie
TeamCity (kommerziell, JetBrains), Bamboo (Atlassian), Drone CI (Open Source,
Container-basiert), Argo CD (Kubernetes-native) oder Spinnaker (Cloud-native
Delivery). Aber in 80 % aller Fälle läuft es auf Jenkins, GitLab oder GitHub
hinaus. Und genau hier entscheidet sich, wie produktiv – oder frustrierend –
deine CI/CD Pipeline wird.

Open Source vs. SaaS: CI/CD
Pipeline Vergleich mit Blick
auf Kosten, Wartung und
Skalierung
Die Gretchenfrage im CI/CD Pipeline Vergleich: Willst du maximale Kontrolle,
oder möglichst wenig Aufwand? Open-Source-Tools wie Jenkins, GitLab CE oder
Drone CI geben dir volle Flexibilität – aber sie verlangen auch, dass du dich
um Updates, Security, Skalierung, Backups und Monitoring selbst kümmerst. Wer
hier nicht regelmäßig patcht, lebt gefährlich. Gerade Jenkins ist berüchtigt
für seine Security-Probleme, wenn er ungepflegt vor sich hin dümpelt.

SaaS-Lösungen wie GitHub Actions, CircleCI oder GitLab.com nehmen dir viel
Arbeit ab. Du musst dich nicht um Infrastruktur oder Upgrades kümmern, alles
läuft in der Cloud. Der Nachteil: Weniger Kontrolle über Builds, oft
eingeschränkte Customization, und im Enterprise-Umfeld können Datenschutz und
Compliance zum Problem werden. Die Kostenstruktur ist zudem undurchsichtig:
Was im Free-Tier noch nett wirkt, kann bei steigendem Build-Volumen schnell
zum Kostenfaktor mutieren.

Ein echtes Problem ist das Thema Vendor Lock-In. Wer sich zu sehr auf
proprietäre CI/CD Features eines Anbieters verlässt, zahlt bei der Migration
teuer – sowohl technisch als auch organisatorisch. YAML ist nicht gleich
YAML, und die Pipeline-Syntax unterscheidet sich massiv. Für Teams, die
langfristige Unabhängigkeit wollen, ist das ein echtes Risiko.

Skalierung ist der nächste Knackpunkt. Open-Source-Tools lassen sich in der
Theorie beliebig ausbauen – in der Praxis sind sie aber oft schwer zu
orchestrieren. SaaS-Anbieter skalieren automatisch, kosten aber bei hoher
Last deutlich mehr. Wer CI/CD Pipelines auf Kubernetes-Basis (z.B. mit Argo
Workflows oder Tekton) betreibt, kann Skalierung per Cluster automatisieren –
braucht aber tiefes Know-how.

Unterm Strich: Es gibt keine perfekte Lösung. Wer maximale Kontrolle und
Flexibilität will, zahlt mit Zeit und Wartungsaufwand. Wer Komfort und Cloud
will, zahlt mit Geld – und manchmal mit Einschränkungen beim Datenschutz. Die
beste CI/CD Pipeline ist am Ende die, die zu deinem Team und deinem Produkt
passt. Alles andere ist Marketing.



Security, Integrationen und
Automatisierung: Worauf es bei
der CI/CD Pipeline 2025
wirklich ankommt
CI/CD Pipelines sind das Einfallstor Nummer eins für Supply-Chain-Angriffe.
Wer hier schludert, öffnet Hackern Tür und Tor. Im CI/CD Pipeline Vergleich
2025 sind Security-Features deshalb kein Bonus, sondern Pflicht. Dazu
gehören:

Secrets Management (z.B. HashiCorp Vault, AWS Secrets Manager, native
Tool-Lösungen)
Rollen- und Rechteverwaltung (RBAC), SSO, Zwei-Faktor-Authentifizierung
Auditing und Logging aller Pipeline-Aktivitäten
Policy Enforcement: Was darf deployt werden, was nicht? Wer darf welche
Stages freigeben?
Automatisiertes Dependency- und Vulnerability-Scanning (Snyk, SonarQube,
GitLab Security)

Integrationen sind der nächste große Punkt: Monitoring (Prometheus, Grafana,
Datadog), Deployment-Targets (AWS, Azure, GCP, Kubernetes, Docker), ChatOps
(Slack, MS Teams), Issue Tracker (Jira, YouTrack, GitHub Issues) – je mehr
ein CI/CD Tool hier “out of the box” kann, desto produktiver wird dein
DevOps-Prozess. Proprietäre Systeme ohne gute API oder Plugin-Schnittstelle
sind ein Albtraum, wenn du wachsen willst.

Und Automatisierung? Ist sowieso Pflicht. Jeder manuelle Schritt in der
Pipeline ist eine potentielle Fehlerquelle. Moderne CI/CD Pipelines bieten
alles als Code: Build-Skripte, Test-Suites, Deployments, sogar Infrastruktur
(Infrastructure as Code mit Terraform, Pulumi, Ansible). Wer in 2025 noch
manuell deployed, kann gleich wieder zur Schreibmaschine wechseln.

Fazit: CI/CD Pipelines sind heute das Rückgrat der Softwareentwicklung. Aber
nur, wenn sie richtig gebaut, gewartet und abgesichert sind. Die beste
Pipeline ist die, von der du nachts nicht träumst – weil sie einfach läuft.

So findest du deine perfekte
CI/CD Pipeline: Schritt-für-
Schritt-Anleitung
Die Tool-Landschaft ist gewaltig, die Anforderungen individuell. Damit du
dich im CI/CD Pipeline Vergleich nicht verläufst, hier ein systematischer



Ansatz – Step by Step:

1. Anforderungen definieren: Welche Programmiersprachen, Frameworks,
Deployment-Ziele und Teamgröße hast du? Brauchst du Multi-Cloud, On-
Premises oder Hybrid?
2. Infrastruktur wählen: Soll die Pipeline in der Cloud laufen, auf
eigenen Servern oder in Kubernetes-Clustern? Gibt es Datenschutz-
Anforderungen?
3. Tools shortlist: Prüfe, welche Tools zu deinem Stack passen (GitLab
CI für GitLab, GitHub Actions für GitHub, Jenkins/Drone für maximale
Kontrolle etc.)
4. PoC aufsetzen: Starte mit einem Proof-of-Concept. Baue eine einfache
Pipeline, teste Build-Zeiten, Integrationen, Debuggability und
Wartungsaufwand.
5. Security evaluieren: Prüfe, wie Secrets gemanagt werden, wie RBAC und
Auditing funktioniert, welche Compliance-Features es gibt.
6. Kosten kalkulieren: Berechne die realen Kosten bei steigendem Team,
Build-Volumen und Storage. Achtung: Viele SaaS-Anbieter werden schnell
teuer.
7. Skalierung testen: Simuliere Last, vergleiche Performance und
Stabilität. Wie läuft die Pipeline unter Dauerfeuer?
8. Automatisierung prüfen: Kann alles als Code abgebildet werden? Gibt
es Integrationen für Tests, Deployments, Monitoring und Rollbacks?
9. Community & Support checken: Gibt es eine aktive Community, guten
Support, regelmäßige Updates? Wie schnell werden Bugs gefixt?
10. Migration planen: Wenn du dich für ein Tool entscheidest – wie
schwierig wäre ein späterer Wechsel? Gibt es Standards, oder bist du
locked-in?

Mit diesem Ablauf findest du die CI/CD Pipeline, die nicht nur auf dem
Papier, sondern auch in der Realität funktioniert. Alles andere ist
Glücksspiel.

Fazit: CI/CD Pipeline
Vergleich 2025 – Wer gewinnt?
Der große CI/CD Pipeline Vergleich zeigt: Es gibt keine One-Size-Fits-All-
Lösung. Wer maximale Flexibilität und Kontrolle will, wählt Jenkins oder
GitLab CI – zahlt aber mit Wartungsaufwand. Wer schnell, cloudbasiert und
komfortabel bauen will, ist mit GitHub Actions oder CircleCI gut beraten –
stößt aber bei Customization und Skalierung an Grenzen. Am Ende entscheidet
dein Stack, dein Team und deine Anforderungen.

CI/CD Pipelines sind das Rückgrat moderner Entwicklung. Sie machen den
Unterschied zwischen Release-Hölle und flüssigen Deployments. Wer 2025 hier
patzt, verliert nicht nur Zeit und Geld, sondern auch Entwickler und Kunden.
Die Auswahl ist riesig, die Fehlerquellen noch größer. Aber: Mit dem
richtigen System, sauberer Automatisierung und konsequentem Security-Fokus
bist du der Konkurrenz immer einen Release voraus. Alles andere? Ist DevOps-



Karaoke. Und 404 Magazine hat keine Lust auf Playback.


