CI/CD Pipeline Vergleich:
Die besten Tools im Check

Category: Tools
geschrieben von Tobias Hager | 16. August 2025

gL

o e = [p——— reyrr—

CI/CD Pipeline Vergleich:
Die besten Tools 1im Check

Du willst schnell deployen, deine Entwickler nicht mit stumpfsinnigen
Routinejobs qualen und Continuous Delivery wirklich leben? Dann brauchst du
nicht irgendein CI/CD-Tool, sondern das richtige. Willkommen beim grofRen
CI/CD Pipeline Vergleich — wo wir die besten Tools gnadenlos
auseinandernehmen, Mythen killen und dir zeigen, welches System 2025 wirklich
performt. Zeit, den DevOps-Mistkerl in dir zu wecken — langweilige Tool-
Listen findest du woanders.

e Was ist eine CI/CD Pipeline — und warum kein moderner Software-Stack
ohne sie auskommt

e Die wichtigsten Bewertungskriterien fur CI/CD Tools im Jahr 2025

e GitHub Actions, GitLab CI, Jenkins, CircleCI & Co. im direkten Vergleich

e Was Open-Source-Tools wirklich konnen — und wo sie gnadenlos scheitern

e Wie Security, Skalierbarkeit und Integrationen das Rennen entscheiden

e Was du beim Thema Kosten, Wartung und Cloud vs. On-Premises wirklich

https://404.marketing/cicd-pipeline-vergleich-2025/
https://404.marketing/cicd-pipeline-vergleich-2025/

wissen musst

e Step-by-Step: So wahlst du die richtige CI/CD Pipeline fir deinen Tech-
Stack

e Warum der Hype um “NoOps” Quatsch ist — und Automatisierung trotzdem
Pflicht bleibt

e Fazit: CI/CD Pipeline Vergleich 2025 — welche LOsung passt wirklich zu
dir?

Die Zeiten, in denen Entwickler nach jedem Commit auf Knien gebetet haben,
dass das Deployment nicht explodiert, sind vorbei — oder sollten es sein.
CI/CD Pipelines sind heute das Ruckgrat moderner Softwareentwicklung. Aber:
Der Markt ist voll von Anbietern, die alle das Rad neu erfinden wollen.
Jenkins, GitHub Actions, GitLab CI, CircleCI, Travis — jeder verspricht
Continuous Integration und Continuous Delivery wie von Zauberhand. Doch was
davon taugt wirklich? Und wo verbrennst du nur Zeit, Nerven und Budget?
Dieser CI/CD Pipeline Vergleich trennt die Spreu vom Weizen. Wir gehen
technisch in die Tiefe, fuhren dich durch die wichtigsten Features,
Benchmarks und Fallstricke. Am Ende weiRt du: Mit welchem Tool du baust,
testest, deployst — und nicht untergehst.

CI/CD Pipelines sind keine nette Spielerei, sondern der elementare Baustein
far schnelle, sichere und wiederholbare Software-Releases. Wer hier
schludert, zahlt doppelt: mit technischen Schulden, manuellem Aufwand,
Sicherheitslucken und frustrierten Entwicklern. 404 Magazine zeigt dir, warum
du heute keine Ausreden mehr hast — und wie du die perfekte CI/CD Ldsung
auswahlst.

Was 1st eine CI/CD Pipeline —
und warum brauchst du sie
jetzt?

Fangen wir mit dem Grundsatz an: CI/CD steht fur Continuous Integration und
Continuous Delivery (oder Deployment). Eine CI/CD Pipeline ist nichts anderes
als eine automatisierte Prozesskette, die Code nach dem Commit baut, testet
und in verschiedenen Stages bis zur Produktion ausrollt. Klingt einfach, ist
aber technisch eine der komplexesten Disziplinen im DevOps-Universum.

Continuous Integration bedeutet, dass jeder Code-Change direkt in den
Hauptzweig integriert und automatisiert getestet wird. Continuous Delivery
geht einen Schritt weiter: Nach bestandenen Tests wird der Code automatisch
bereitgestellt — und mit Continuous Deployment sogar gleich live geschaltet.
Das Ziel: Fehler friuhzeitig erkennen, Releases beschleunigen, und die
menschliche Komponente auf ein Minimum reduzieren. Oder anders gesagt: Keine
Helden mehr im nachtlichen Serverraum, weil das Deployment wieder crashed.

Warum ist das so wichtig? Weil Software heute in immer kirzeren Zyklen
ausgeliefert werden muss. Wer monatelang an Releases schraubt, ist tot.
Kunden erwarten Updates im Wochen- oder Tagesrhythmus. CI/CD Pipelines

ermoglichen genau das — vorausgesetzt, sie sind sauber aufgesetzt und
integriert. Und hier trennt sich die Spreu vom Weizen: Zwischen “funktioniert
irgendwie” und “lauft wie ein Schweizer Uhrwerk” liegen Welten.

Im Jahr 2025 sind CI/CD Pipelines keine Option mehr, sondern Pflichtprogramm.
Wer sie ignoriert, riskiert nicht nur technische Schulden, sondern den
Anschluss an den Markt. Und weil die Tool-Auswahl gigantisch ist, brauchst du
knallharte Kriterien. Willkommen beim echten CI/CD Pipeline Vergleich.

Bewertungskriterien fur CI/CD
Tools: Was zahlt wirklich?

Wer sich schon mal durch die Marketing-Folien der groBen CI/CD Anbieter
gewuhlt hat, weill: Jeder kann alles — angeblich. Doch in der Praxis
entscheidet sich der Wert eines Tools an harten Fakten. Im CI/CD Pipeline
Vergleich 2025 zahlen vor allem diese Kriterien:

e Skalierbarkeit: Wie performant lauft die Pipeline bei hunderten
gleichzeitigen Builds? Kann das Tool horizontal skalieren, oder stlrzt
es schon bei 10 parallelen Deployments ab?

e Pipeline-As-Code: Moderne CI/CD setzt auf deklarative Konfiguration
(z.B. YAML oder Groovy). Wer heute noch auf Klick-Klick-GUI setzt, hat
verloren.

e Integrationsfahigkeit: Wie gut lassen sich externe Tools (Monitoring,
Security, Deployment-Targets) einbinden? Gibt es Standard-Plugins oder
ist alles Bastelarbeit?

e Security & Compliance: Unterstitzt das Tool Secrets Management, Policy
Enforcement und Audit Logs? Wie sieht es mit RBAC, SSO und Compliance-
Features aus?

e Cloud vs. On-Premises: Muss die Pipeline in der Cloud laufen oder ist
ein Self-Hosted-Setup moglich? Wie flexibel ist das System fir hybride
Umgebungen?

e Community & Support: Gibt es eine aktive Community, regelmaBfige Updates
und guten Support? Oder bist du nach dem Onboarding auf dich allein
gestellt?

e Kosten: Ist das Tool Open Source, gibt es versteckte Kosten, wie sieht
das Preismodell bei steigendem Team- oder Build-Volumen aus?

Der CI/CD Pipeline Vergleich muss all diese Faktoren beriucksichtigen — denn
nur so findest du das System, das jetzt und in Zukunft zu deinem Tech-Stack
passt. Und die Unterschiede sind massiv. Ein Tool wie Jenkins ist Open-
Source-Konig, aber komplex wie die Holle. GitHub Actions verspricht Cloud-
Komfort, aber hat Limits. GitLab CI will alles kdnnen, CircleCI setzt auf
Geschwindigkeit. Wer hier nicht genau hinschaut, zahlt am Ende doppelt — mit
Downtime, Arger und Migrationen.

Die Wahrheit: Es gibt kein “bestes” CI/CD Tool fir alle. Aber es gibt eine
Menge schlechte. Und noch mehr, die nur unter ganz bestimmten Bedingungen
glanzen. Zeit, in die Details zu gehen.

Die grollen Player im CI/CD
Pipeline Vergleich: GitHub
Actions, Jenkins, GitLab CI,
CircleCI & Co.

Wer 2025 eine CI/CD Pipeline aufsetzt, landet zwangslaufig bei einer Handvoll
Platzhirschen. Jeder bringt sein eigenes Okosystem, seine Starken und seine
Schwachen mit. Im direkten CI/CD Pipeline Vergleich schneiden nicht alle
gleich ab — und manche Tools sind schlichtweg ein Albtraum, wenn du nicht
genau weilSt, was du tust.

Jenkins: Der Dinosaurier der CI/CD Welt. Open Source, endlos erweiterbar,
aber auch notorisch wartungsintensiv. Jenkins ist der Inbegriff von Pipeline-
As-Code (Groovy) und bietet dank tausender Plugins praktisch unbegrenzte
Moglichkeiten. Aber: Installation, Wartung und Security sind eine
Herausforderung. Wer Jenkins betreibt, braucht Know-how und Zeit. Fir
komplexe Enterprise-Workflows ist Jenkins oft unschlagbar — fur kleine Teams
aber overkill.

GitLab CI/CD: Integriert direkt in GitLab, setzt voll auf YAML-Konfiguration
und bietet von Haus aus eine vollstandige DevOps-Plattform (CI, CD, SCM,
Container Registry, Security, Monitoring). GitLab CI lauft sowohl in der
Cloud als auch On-Premises. Der groBe Vorteil: Alles aus einer Hand, zentrale
Verwaltung, starke Community, exzellente Rechteverwaltung. Fir Teams, die
sowieso mit GitlLab arbeiten, oft die logische Wahl. Nachteil: Performance in
groBen Self-Hosted-Setups kann schwacheln.

GitHub Actions: Die Cloud-native CI/CD LO6sung von GitHub. Vollstandig in den
GitHub-Workflow integriert, mit deklarativer Pipeline in YAML, Marketplace
far Actions und kostenlosem Einstieg. Ideal fir Open Source und kleine bis
mittlere Projekte. Nachteile: Limits bei Build-Minuten, wenig Kontrolle uber
Infrastruktur, und bei komplexen Deployments st6Bt das System schnell an
Grenzen. Fur klassische Enterprise-Workflows und hybride Cloud-Deployments
oft zu schlank.

CircleCI: Cloud-First, aber auch On-Premises (Server) verfugbar. Bekannt far
Geschwindigkeit, einfache Konfiguration und eine breite Auswahl an
Integrationen. CircleCI uberzeugt mit schnellem Spin-Up neuer Builds und
flexibler Ressourcensteuerung per YAML. Nachteile: Viele Features sind im
Free-Tier limitiert, und bei groBen Teams wird es teuer. Proprietare
Scripting-Syntax kann zur Hurde werden.

Travis CI: Lange Zeit Liebling der Open-Source-Szene, heute aber von GitHub
Actions und CircleCI uberholt. Travis ist einfach zu konfigurieren, aber in
puncto Performance, Integrationen und Security schwacher aufgestellt. Fur
kleine, private Projekte okay — fur professionelle Workflows nicht mehr

konkurrenzfahig.

Die Auswahl ist damit keineswegs erschopft. Es gibt weitere Tools wie
TeamCity (kommerziell, JetBrains), Bamboo (Atlassian), Drone CI (Open Source,
Container-basiert), Argo CD (Kubernetes-native) oder Spinnaker (Cloud-native
Delivery). Aber in 80 % aller Falle lauft es auf Jenkins, GitLab oder GitHub
hinaus. Und genau hier entscheidet sich, wie produktiv — oder frustrierend —
deine CI/CD Pipeline wird.

Open Source vs. SaaS: CI/CD
Pipeline Vergleich mit Blick
auf Kosten, Wartung und
Skalierung

Die Gretchenfrage im CI/CD Pipeline Vergleich: Willst du maximale Kontrolle,
oder méglichst wenig Aufwand? Open-Source-Tools wie Jenkins, GitLab CE oder
Drone CI geben dir volle Flexibilitat — aber sie verlangen auch, dass du dich
um Updates, Security, Skalierung, Backups und Monitoring selbst kummerst. Wer
hier nicht regelmdfig patcht, lebt gefahrlich. Gerade Jenkins ist beridchtigt
fur seine Security-Probleme, wenn er ungepflegt vor sich hin dumpelt.

SaaS-Loésungen wie GitHub Actions, CircleCI oder GitLab.com nehmen dir viel
Arbeit ab. Du musst dich nicht um Infrastruktur oder Upgrades kummern, alles
lauft in der Cloud. Der Nachteil: Weniger Kontrolle ulber Builds, oft
eingeschrankte Customization, und im Enterprise-Umfeld kénnen Datenschutz und
Compliance zum Problem werden. Die Kostenstruktur ist zudem undurchsichtig:
Was im Free-Tier noch nett wirkt, kann bei steigendem Build-Volumen schnell
zum Kostenfaktor mutieren.

Ein echtes Problem ist das Thema Vendor Lock-In. Wer sich zu sehr auf
proprietare CI/CD Features eines Anbieters verlasst, zahlt bei der Migration
teuer — sowohl technisch als auch organisatorisch. YAML ist nicht gleich
YAML, und die Pipeline-Syntax unterscheidet sich massiv. Fir Teams, die
langfristige Unabhangigkeit wollen, ist das ein echtes Risiko.

Skalierung ist der nachste Knackpunkt. Open-Source-Tools lassen sich in der
Theorie beliebig ausbauen — in der Praxis sind sie aber oft schwer zu
orchestrieren. SaaS-Anbieter skalieren automatisch, kosten aber bei hoher
Last deutlich mehr. Wer CI/CD Pipelines auf Kubernetes-Basis (z.B. mit Argo
Workflows oder Tekton) betreibt, kann Skalierung per Cluster automatisieren —
braucht aber tiefes Know-how.

Unterm Strich: Es gibt keine perfekte Ldésung. Wer maximale Kontrolle und
Flexibilitat will, zahlt mit Zeit und Wartungsaufwand. Wer Komfort und Cloud
will, zahlt mit Geld — und manchmal mit Einschrankungen beim Datenschutz. Die
beste CI/CD Pipeline ist am Ende die, die zu deinem Team und deinem Produkt
passt. Alles andere ist Marketing.

Security, Integrationen und
Automatisierung: Worauf es bei
der CI/CD Pipeline 2025
wirklich ankommt

CI/CD Pipelines sind das Einfallstor Nummer eins fur Supply-Chain-Angriffe.
Wer hier schludert, o6ffnet Hackern Tur und Tor. Im CI/CD Pipeline Vergleich
2025 sind Security-Features deshalb kein Bonus, sondern Pflicht. Dazu
gehoren:

e Secrets Management (z.B. HashiCorp Vault, AWS Secrets Manager, native
Tool-L6sungen)

e Rollen- und Rechteverwaltung (RBAC), SSO, Zwei-Faktor-Authentifizierung

e Auditing und Logging aller Pipeline-Aktivitaten

e Policy Enforcement: Was darf deployt werden, was nicht? Wer darf welche
Stages freigeben?

e Automatisiertes Dependency- und Vulnerability-Scanning (Snyk, SonarQube,
GitLab Security)

Integrationen sind der nachste grofRe Punkt: Monitoring (Prometheus, Grafana,
Datadog), Deployment-Targets (AWS, Azure, GCP, Kubernetes, Docker), ChatOps
(Slack, MS Teams), Issue Tracker (Jira, YouTrack, GitHub Issues) — je mehr
ein CI/CD Tool hier “out of the box” kann, desto produktiver wird dein
DevOps-Prozess. Proprietare Systeme ohne gute API oder Plugin-Schnittstelle
sind ein Albtraum, wenn du wachsen willst.

Und Automatisierung? Ist sowieso Pflicht. Jeder manuelle Schritt in der
Pipeline ist eine potentielle Fehlerquelle. Moderne CI/CD Pipelines bieten
alles als Code: Build-Skripte, Test-Suites, Deployments, sogar Infrastruktur
(Infrastructure as Code mit Terraform, Pulumi, Ansible). Wer in 2025 noch
manuell deployed, kann gleich wieder zur Schreibmaschine wechseln.

Fazit: CI/CD Pipelines sind heute das Ruckgrat der Softwareentwicklung. Aber
nur, wenn sie richtig gebaut, gewartet und abgesichert sind. Die beste
Pipeline ist die, von der du nachts nicht traumst — weil sie einfach lauft.

So findest du deine perfekte
CI/CD Pipeline: Schritt-fur-
Schritt-Anleitung

Die Tool-Landschaft ist gewaltig, die Anforderungen individuell. Damit du
dich im CI/CD Pipeline Vergleich nicht verlaufst, hier ein systematischer

Ansatz — Step by Step:

e 1. Anforderungen definieren: Welche Programmiersprachen, Frameworks,
Deployment-Ziele und TeamgroBe hast du? Brauchst du Multi-Cloud, On-
Premises oder Hybrid?

e 2. Infrastruktur wahlen: Soll die Pipeline in der Cloud laufen, auf
eigenen Servern oder in Kubernetes-Clustern? Gibt es Datenschutz-
Anforderungen?

e 3. Tools shortlist: Prufe, welche Tools zu deinem Stack passen (GitLab
CI far GitLab, GitHub Actions fur GitHub, Jenkins/Drone fir maximale
Kontrolle etc.)

e 4. PoC aufsetzen: Starte mit einem Proof-of-Concept. Baue eine einfache
Pipeline, teste Build-Zeiten, Integrationen, Debuggability und
Wartungsaufwand.

e 5. Security evaluieren: Prife, wie Secrets gemanagt werden, wie RBAC und
Auditing funktioniert, welche Compliance-Features es gibt.

e 6. Kosten kalkulieren: Berechne die realen Kosten bei steigendem Team,
Build-Volumen und Storage. Achtung: Viele SaaS-Anbieter werden schnell
teuer.

e 7. Skalierung testen: Simuliere Last, vergleiche Performance und
Stabilitat. Wie lauft die Pipeline unter Dauerfeuer?

e 8. Automatisierung prifen: Kann alles als Code abgebildet werden? Gibt
es Integrationen fur Tests, Deployments, Monitoring und Rollbacks?

¢ 9. Community & Support checken: Gibt es eine aktive Community, guten
Support, regelmafige Updates? Wie schnell werden Bugs gefixt?

e 10. Migration planen: Wenn du dich fur ein Tool entscheidest — wie
schwierig ware ein spaterer Wechsel? Gibt es Standards, oder bist du
locked-in?

Mit diesem Ablauf findest du die CI/CD Pipeline, die nicht nur auf dem
Papier, sondern auch in der Realitat funktioniert. Alles andere ist
Glicksspiel.

Fazit: CI/CD Pipeline
Vergleich 2025 — Wer gewinnt?

Der groBe CI/CD Pipeline Vergleich zeigt: Es gibt keine One-Size-Fits-All-
Losung. Wer maximale Flexibilitat und Kontrolle will, wahlt Jenkins oder
GitLab CI - zahlt aber mit Wartungsaufwand. Wer schnell, cloudbasiert und
komfortabel bauen will, ist mit GitHub Actions oder CircleCI gut beraten —
stoBt aber bei Customization und Skalierung an Grenzen. Am Ende entscheidet
dein Stack, dein Team und deine Anforderungen.

CI/CD Pipelines sind das Ruckgrat moderner Entwicklung. Sie machen den
Unterschied zwischen Release-Holle und flissigen Deployments. Wer 2025 hier
patzt, verliert nicht nur Zeit und Geld, sondern auch Entwickler und Kunden.
Die Auswahl ist riesig, die Fehlerquellen noch grofler. Aber: Mit dem
richtigen System, sauberer Automatisierung und konsequentem Security-Fokus
bist du der Konkurrenz immer einen Release voraus. Alles andere? Ist DevOps-

Karaoke. Und 404 Magazine hat keine Lust auf Playback.

