
Event Driven Stack
Explained: Klar, Knackig,
Kompetent
Category: Tools
geschrieben von Tobias Hager | 4. September 2025

Event Driven Stack
Explained: Klar, Knackig,
Kompetent
Du meinst, du kennst dich mit modernen Webarchitekturen aus? Dann erklär mal
eben deinem Chef, wie ein Event Driven Stack funktioniert – ohne ins Stottern
zu geraten. Viel Glück! Denn die meisten, die darüber reden, meinen
eigentlich nur “irgendwas mit Events”. Aber was steckt wirklich dahinter? In
diesem Artikel bekommst du nicht nur die Buzzwords, sondern die knallharte,
technische Wahrheit: Was ein Event Driven Stack ist, warum er die Zukunft von
skalierbaren Systemen bestimmt und wie du ihn richtig aufsetzt. Kein
Marketing-Geschwafel, kein Developer-Bingo – nur Fakten, Klartext und
Kompetenz.

https://404.marketing/event-driven-stack-erklaerung/
https://404.marketing/event-driven-stack-erklaerung/
https://404.marketing/event-driven-stack-erklaerung/


Was ein Event Driven Stack wirklich ist – und warum klassische
Architekturen dagegen alt aussehen
Die wichtigsten Bausteine eines Event Driven Stacks: Event Sourcing,
Message Broker, Event Bus, Microservices
Wie Events, Producer, Consumer und Topics zusammenspielen – technisch
und strategisch
Warum Event Driven Architekturen für Skalierbarkeit, Fehlerresilienz und
Echtzeitfähigkeit unverzichtbar sind
Die größten Missverständnisse rund um Event Driven Stacks – und wie du
sie vermeidest
Best Practices für die Implementierung – von der Planung bis zum Betrieb
Die wichtigsten Tools & Frameworks: Kafka, RabbitMQ, NATS, EventStore &
Co.
Welche Fehler dich die Performance und Integrität kosten – und wie du
sie technisch sauber umgehst
Eine Schritt-für-Schritt-Anleitung für dein erstes Event Driven Projekt
Fazit: Warum “event-driven” kein Buzzword, sondern Pflicht ist – und wie
du den Stack fit für die Zukunft machst

Die Event Driven Architecture (EDA) ist kein Hype, sondern der logische
nächste Schritt für alle, die im Zeitalter der Microservices, Cloud-Native-
Apps und Echtzeitdaten noch mitspielen wollen. Wer heute noch auf klassische,
monolithische Request-Response-Muster setzt, kann direkt den
Warteschlangenplatz im digitalen Museum reservieren. Aber was bedeutet das
alles konkret? Wie unterscheidet sich ein sauber aufgesetzter Event Driven
Stack von den Flickenteppichen, die viele “Enterprise-Architekten” bis heute
als Status Quo verkaufen? Und warum ist ein Event Driven Stack der Schlüssel
für Performanz, Skalierbarkeit und Flexibilität? Wir gehen der Sache auf den
Grund – technisch, kritisch und ohne Bullshit.

Was ist ein Event Driven
Stack? Die Architektur hinter
dem Buzzword
Der Begriff “Event Driven Stack” wird im Tech-Jargon inflationär benutzt,
selten jedoch klar erklärt. Ein Event Driven Stack ist eine Architektur, bei
der nicht mehr klassische API-Calls oder direkte Datenbankzugriffe den
Informationsaustausch bestimmen, sondern Events. Ein Event ist eine
Zustandsänderung, die von einem Service als Nachricht veröffentlicht und von
einem oder mehreren anderen Services konsumiert werden kann. Das klingt
simpel, ist aber ein radikaler Paradigmenwechsel im Vergleich zu
traditionellen, synchronen Architekturen.

Im Zentrum des Event Driven Stacks steht der Event Broker – auch Message
Broker oder Event Bus genannt. Hier werden Events als Messages persistent
gespeichert, verteilt und verwaltet. Bekannte Vertreter sind Apache Kafka,
RabbitMQ oder NATS. Services, die Events erzeugen, heißen Producer. Services,



die auf diese Events reagieren, heißen Consumer. Die Events selbst werden
häufig in logischen Kanälen (Topics, Queues, Streams) organisiert und können
asynchron verarbeitet werden. Das A und O: Lose Kopplung. Producer und
Consumer kennen sich nicht direkt, sondern kommunizieren ausschließlich über
den Broker.

Der Vorteil: Ein Event Driven Stack ermöglicht es, komplexe Systeme zu
zerlegen und unabhängig voneinander zu skalieren. Fehler in einem Service
blockieren nicht das gesamte System – solange der Event Broker läuft, bleibt
das System verfügbar. Zudem lassen sich Events speichern (Event Sourcing),
nachverarbeiten (Replay) und für Auditing-Zwecke archivieren. Wer das Prinzip
verstanden hat, kann Systeme bauen, die “von Natur aus” skalierbar,
ausfallsicher und flexibel sind – und die klassischen Engpässe synchroner
Architekturen elegant umgehen.

Und jetzt, Hand aufs Herz: Wie viele deiner Projekte setzen wirklich auf
einen konsistenten Event Driven Stack – und wie viele verschleiern ihre REST-
API-Orgien unter einem Haufen von “Event-Handlern”, die eigentlich nur
Callback-Hölle produzieren? Wer es ernst meint, setzt auf echte Events, keine
halbgaren Workarounds.

Die zentralen Komponenten
eines Event Driven Stacks:
Event Broker, Producer,
Consumer & mehr
Ein Event Driven Stack besteht nicht aus einer Wunderwaffe, sondern aus einem
fein abgestimmten Set von Technologien und Konzepten. Die wichtigsten
Elemente im Überblick:

Event Broker / Message Broker: Die Schaltzentrale, die Events empfängt,
speichert, verteilt und im Idealfall auch persistiert. Kafka, RabbitMQ,
NATS, AWS Kinesis oder Azure Event Hubs gehören zu den Platzhirschen.
Der Broker sorgt für Entkopplung, Skalierung und garantiert, dass kein
Event verloren geht.
Producer: Services, die Events erzeugen und an den Broker schicken. Das
kann alles sein: eine Webanwendung, ein IoT-Device, ein Cronjob oder ein
Microservice. Wichtig: Producer sind dumm – sie wissen nichts darüber,
wer ihre Events konsumiert.
Consumer: Services, die Events konsumieren und darauf reagieren. Ein
Consumer kann auf viele Topics hören und je nach Business Logic agieren:
Datenbank schreiben, neue Events erzeugen, externe Systeme triggern.
Topics/Queues/Streams: Logische Kanäle, über die Events gruppiert und
verteilt werden. Ein Topic ist nicht nur ein “Ordner”, sondern
definiert, wie Events verteilt, repliziert und ggf. partitioniert
werden.



Event Sourcing und Event Store: Events werden nicht nur verarbeitet,
sondern als Quelle der Wahrheit gespeichert. Das erlaubt das
vollständige Replay von Systemzuständen und eine lückenlose Historie.
Event Schema Registry: Verwaltung und Versionierung der Event-Strukturen
(meist als JSON Schema, Avro oder Protobuf). Wer hier schlampt,
produziert Chaos beim Consumer-Upgrade.

Die große Kunst: All diese Komponenten müssen nicht nur einzeln
funktionieren, sondern perfekt zusammenspielen. Jede Schwachstelle – etwa ein
falsch konfigurierter Topic, ein Consumer ohne Retry-Mechanismus oder ein
Broker ohne Persistenz – rächt sich spätestens im Live-Betrieb. Und noch
schlimmer: Viele Entwickler verwechseln Event Driven mit “asynchronem
Spaghetti-Code”. Das ist kein Stack, sondern ein Wartungsalbtraum.

Ein echter Event Driven Stack basiert immer auf technischer Disziplin: klare
Schnittstellen, sauber definierte Event-Schemas, Monitoring auf allen Ebenen,
dedizierte Error-Handling-Strategien und – ganz wichtig – ein Broker, der
nicht bei 1.000 Events pro Sekunde in die Knie geht. Wer das ignoriert, baut
kein skalierbares System, sondern ein digitales Kartenhaus.

Wie Events, Producer, Consumer
und Topics technisch
zusammenspielen
Events sind die DNA eines Event Driven Stacks – aber wie funktioniert das
Zusammenspiel im Detail? Zeit für einen Deep Dive in die technischen Abläufe:

Ein Producer erzeugt einen Event, etwa “OrderPlaced”, “UserRegistered” oder
“PaymentFailed”. Dieser Event wird als Message an den Broker geschickt,
typischerweise in ein bestimmtes Topic. Der Broker übernimmt die
Weiterleitung, Persistenz und Verteilung. Consumer subscriben auf relevante
Topics und reagieren auf eingehende Events. Die Verarbeitung geschieht
asynchron – das heißt, der Producer wartet nicht, bis alle Consumer fertig
sind. Das entkoppelt die Komponenten vollständig und erlaubt eine massive
Parallelisierung.

Die technische Umsetzung sieht typischerweise so aus:

Producer serialisiert das Event (z.B. als JSON oder Avro), versieht es
mit Metadaten (Timestamp, Correlation ID) und sendet es an den Broker.
Der Broker nimmt die Nachricht entgegen, speichert sie persistent (je
nach Broker bis zu mehreren Tagen oder Wochen) und verteilt sie an alle
abonnierten Consumer.
Consumer holen sich die Events, verarbeiten sie und bestätigen die
erfolgreiche Verarbeitung (Commit/Acknowledge). Bei Fehlern greifen
Retry-Strategien, Dead Letter Queues oder Alerting-Mechanismen.
Wenn ein Consumer ausfällt, bleibt das Event im Topic/Queue und wird
erneut ausgeliefert, sobald der Consumer wieder verfügbar ist.



Der Clou: Neue Consumer können jederzeit hinzugefügt werden, ohne dass die
Producer angepasst werden müssen. So lassen sich Funktionen wie Analytics,
Monitoring, Auditing oder Third-Party-Integrationen schnell und sauber
andocken. Und niemand muss mehr Angst vor monolithischen Abhängigkeiten
haben.

Aber Achtung: Wer Event-Schemas ändert, ohne Versionierung und strikte
Validierung zu implementieren, sorgt für Inkompatibilitäten und
Produktionsausfälle. “Schema Evolution” ist kein Nice-to-have, sondern
Pflicht. Wer es ignoriert, darf nachts gerne den Pager tragen.

Warum Event Driven
Architekturen für Skalierung,
Fehlerresilienz und
Echtzeitfähigkeit
unverzichtbar sind
Jetzt wird es ernst: Warum solltest du den Aufwand für einen Event Driven
Stack überhaupt betreiben? Die Antwort: Weil klassische Architekturen in
Sachen Skalierung, Fehlerresilienz und Echtzeitfähigkeit einfach nicht
mithalten können. Wer heute noch große Systeme mit synchronen REST-Calls,
zentralen Datenbanken und harter Kopplung baut, bekommt spätestens bei
Lastspitzen oder Systemausfällen die Quittung.

Event Driven Stacks erlauben horizontale Skalierung “by design”. Neue
Consumer-Instanzen können einfach hinzugefügt werden, ohne dass bestehende
Prozesse gestört werden. Der Broker puffert Lastspitzen, Events können im
Batch oder verzögert verarbeitet werden, und der Systemzustand bleibt auch
bei Teil-Ausfällen konsistent. Durch Event Sourcing können Fehler rückwirkend
analysiert, Systeme auf beliebige Zeitpunkte zurückgesetzt und
Datenintegrität garantiert werden.

Echtzeitfähigkeit ist ein weiteres Killer-Feature: Events werden innerhalb
von Millisekunden verteilt, Consumer können sofort reagieren – perfekt für
Analytics, Monitoring, Fraud Detection und IoT-Anwendungen. Klassische
Cronjobs oder Pull-basierte Systeme sehen dagegen alt aus. Und sollte ein
Service schlappmachen, verarbeitet er einfach später weiter – kein
Datenverlust, keine Blockade.

Natürlich gibt es Herausforderungen: Eventual Consistency, Duplicate
Delivery, Out-of-Order Processing. Aber dafür gibt es Lösungen – Idempotenz,
genau-once-Semantik, dedizierte Event Stores und Monitoring. Wer sich davor
drückt, bekommt am Ende ein System, das zwar “irgendwie läuft”, aber nie an
die Performance, Zuverlässigkeit und Flexibilität eines echten Event Driven
Stacks heranreicht.



Die größten Mythen & Fehler
beim Event Driven Stack – und
wie du sie vermeidest
Event Driven klingt schick – aber viele Projekte scheitern an immer denselben
Missverständnissen. Hier die größten Stolperfallen und was du dagegen tun
kannst:

“Events sind nur für Analytics und Logging”: Falsch. Ein Event Driven
Stack ist die Basis für die gesamte Business-Logik, nicht nur für
Telemetrie.
“Ein Broker reicht, den Rest improvisiere ich”: Wer ohne sauberes Schema
Management, Monitoring und Retry-Strategien startet, produziert Chaos.
“Eventual Consistency ist ein No-Go”: Moderne Systeme leben mit
kurzzeitigen Inkonsistenzen. Entscheidend ist, dass das System sich
selbstständig konsolidiert.
“Events sind immer schnell”: Alles hängt am Broker. Falsche
Partitionierung, zu kleine Consumer-Gruppen oder fehlendes Backpressure-
Management führen zu Latenz-Hölle.
“Events ersetzen alle APIs”: Unsinn. Es gibt weiterhin Use Cases für
synchrone Schnittstellen – aber der Default sollte Event First sein.

Merke: Der größte Fehler ist es, Events einfach “draufzupflanzen”, ohne die
Infrastruktur und Prozesse darauf auszurichten. Ein Event Driven Stack ist
kein Add-on, sondern eine eigene Disziplin. Wer sie ignoriert, baut einen
Wartungsalbtraum – und wird in der ersten Lastspitze gnadenlos abgestraft.

Die wichtigsten Lessons Learned:

Versioniere und validiere alle Event-Schemas.
Implementiere Monitoring, Alerting und Dead Letter Queues von Anfang an.
Plane mit Eventual Consistency und baue Idempotenz in jede Consumer-
Logik ein.
Skaliere Broker und Consumer unabhängig voneinander.
Teste das gesamte System regelmäßig auf Backpressure und Fehlerfälle.

Die wichtigsten Tools &
Frameworks für den Event
Driven Stack
Ein Event Driven Stack steht und fällt mit der richtigen Toolchain. Hier die
Platzhirsche, die du kennen und beherrschen musst:

Apache Kafka: Der De-facto-Standard für Event Streaming. Hohe



Durchsatzraten, starke Persistenz, mächtige Partitionierung und ein
riesiges Ökosystem. Wer skalieren will, kommt an Kafka kaum vorbei.
RabbitMQ: Solide Message Queue mit Fokus auf Zuverlässigkeit, Routing
und einfache Integration. Perfekt für klassische Messaging-Patterns und
moderate Event-Volumina.
NATS: Extrem leichtgewichtig, super schnell und Cloud Native. Ideal für
Microservices, bei denen Latenz und Ressourcenverbrauch kritisch sind.
EventStoreDB: Speziell für Event Sourcing entwickelt. Bietet genau-once-
Semantik, Versionierung und Replay-Funktionalitäten auf Enterprise-
Niveau.
Schema Registries: Tools wie Confluent Schema Registry oder Apicurio
verwalten und versionieren Event-Schemas – ein Muss für sauberes Event
Management.
Frameworks & Libraries: Spring Cloud Stream, Akka Streams, Axon,
MassTransit, NestJS/EventEmitter – je nach Programmiersprache und
Anwendungsfall.

Die Auswahl hängt von Use Case, Skalierungsbedarf und Team-Kompetenz ab. Aber
eines gilt immer: Wer die Basics nicht beherrscht, wird auch mit dem fancy
Toolstack nur Probleme multiplizieren. Also: Erst Architektur und Prozesse
sauber aufsetzen – dann Tools wählen.

Schritt-für-Schritt-Anleitung:
Dein erster Event Driven Stack
Genug Theorie, jetzt wird geliefert. So setzt du in zehn Schritten einen
funktionierenden Event Driven Stack auf:

Architektur planen: Welche Services sollen Producer, welche Consumer1.
sein? Welche Events werden benötigt? Wie sieht die Event-Domain aus?
Broker auswählen und aufsetzen: Kafka für hohe Volumina, RabbitMQ für2.
klassische Patterns, NATS für Speed. Installation, Konfiguration,
Monitoring von Anfang an.
Topics/Queues definieren: Logische Trennung nach Business-Domains, klare3.
Namenskonventionen, Partitionierung beachten.
Event Schemas festlegen: Präzise, versionierte Schemas (z.B.4.
Avro/Protobuf/JSON Schema). Validierung und Evolution von Tag 1 an
implementieren.
Producer entwickeln: Saubere Event-Erzeugung, Fehlerhandling,5.
Rückmeldung bei Delivery-Fails.
Consumer entwickeln: Idempotente Verarbeitung, Retry-Mechanismen, Dead6.
Letter Queues integrieren.
Monitoring & Logging einrichten: Broker-Health, Event-Durchsatz,7.
Fehlerquoten, Latenzen überwachen. Tools wie Prometheus, Grafana, ELK-
Stack verwenden.
Load Testing & Backpressure testen: Wie reagiert das System bei 10x,8.
100x Last? Wo entstehen Bottlenecks?
Automatisiertes Deployment: Containerisierung (Docker), Orchestrierung9.
(Kubernetes), CI/CD für Producer und Consumer.



Disaster Recovery planen: Backups für den Broker, Replay-Strategien,10.
Event-Archivierung, Failover-Tests durchführen.

Wer diese Schritte sauber durchzieht, hat nicht nur einen Event Driven Stack,
sondern auch eine Architektur, die auf Wachstum, Wandel und Ausfallsicherheit
ausgelegt ist. Alles andere ist Spielerei.

Fazit: Event Driven Stack –
Pflichtprogramm für moderne
Systeme
Der Event Driven Stack ist kein Buzzword, sondern der neue Standard für
performante, skalierbare und resiliente Architekturen. Wer heute noch auf
klassische, synchron gekoppelte Systeme setzt, sabotiert seine
Zukunftsfähigkeit – und wird von der Konkurrenz gnadenlos überholt. Ein
sauber aufgesetzter Event Driven Stack entkoppelt Komponenten, erlaubt
Echtzeitreaktionen und macht Systeme fit für das, was morgen auf sie zukommt:
mehr Daten, mehr Nutzer, mehr Komplexität.

Natürlich ist der Einstieg anspruchsvoll. Aber die Alternative – weiter mit
monolithischen Systemen und REST-Orgien rumzudoktern – ist keine Lösung,
sondern ein Rezept für Stillstand. Wer den Mut hat, sich mit den technischen
Details auseinanderzusetzen, gewinnt: an Flexibilität, Geschwindigkeit und
Innovationskraft. Die Zukunft ist Event Driven – und sie ist schon längst da.


