Event Driven Stack
Explained: Klar, Knackig,
Kompetent

Category: Tools
geschrieben von Tobias Hager | 4. September 2025

user plocted

microdscerice H
aghatve " produces

Sercumer » <=

", CONSPMICE
"

n_ayn'ént

fauilled ™,

event regenering moiming ivart remiced

COnsATIEr

Event Driven Stack
Explained: Klar, Knackig,
Kompetent

Du meinst, du kennst dich mit modernen Webarchitekturen aus? Dann erklar mal
eben deinem Chef, wie ein Event Driven Stack funktioniert — ohne ins Stottern
zu geraten. Viel Gluck! Denn die meisten, die daruber reden, meinen
eigentlich nur “irgendwas mit Events”. Aber was steckt wirklich dahinter? In
diesem Artikel bekommst du nicht nur die Buzzwords, sondern die knallharte,
technische Wahrheit: Was ein Event Driven Stack ist, warum er die Zukunft von
skalierbaren Systemen bestimmt und wie du ihn richtig aufsetzt. Kein
Marketing-Geschwafel, kein Developer-Bingo — nur Fakten, Klartext und
Kompetenz.


https://404.marketing/event-driven-stack-erklaerung/
https://404.marketing/event-driven-stack-erklaerung/
https://404.marketing/event-driven-stack-erklaerung/

e Was ein Event Driven Stack wirklich ist — und warum klassische
Architekturen dagegen alt aussehen

e Die wichtigsten Bausteine eines Event Driven Stacks: Event Sourcing,
Message Broker, Event Bus, Microservices

e Wie Events, Producer, Consumer und Topics zusammenspielen — technisch
und strategisch

e Warum Event Driven Architekturen fur Skalierbarkeit, Fehlerresilienz und
Echtzeitfahigkeit unverzichtbar sind

e Die grolten Missverstandnisse rund um Event Driven Stacks — und wie du
sie vermeidest

e Best Practices fur die Implementierung — von der Planung bis zum Betrieb

e Die wichtigsten Tools & Frameworks: Kafka, RabbitMQ, NATS, EventStore &
Co.

e Welche Fehler dich die Performance und Integritat kosten — und wie du
sie technisch sauber umgehst

e Eine Schritt-fur-Schritt-Anleitung fir dein erstes Event Driven Projekt

e Fazit: Warum “event-driven” kein Buzzword, sondern Pflicht ist — und wie
du den Stack fit fur die Zukunft machst

Die Event Driven Architecture (EDA) ist kein Hype, sondern der logische
nachste Schritt fur alle, die im Zeitalter der Microservices, Cloud-Native-
Apps und Echtzeitdaten noch mitspielen wollen. Wer heute noch auf klassische,
monolithische Request-Response-Muster setzt, kann direkt den
Warteschlangenplatz im digitalen Museum reservieren. Aber was bedeutet das
alles konkret? Wie unterscheidet sich ein sauber aufgesetzter Event Driven
Stack von den Flickenteppichen, die viele “Enterprise-Architekten” bis heute
als Status Quo verkaufen? Und warum ist ein Event Driven Stack der Schlussel
fuar Performanz, Skalierbarkeit und Flexibilitat? Wir gehen der Sache auf den
Grund — technisch, kritisch und ohne Bullshit.

Was ist ein Event Driven
Stack? Die Architektur hinter
dem Buzzword

Der Begriff “Event Driven Stack” wird im Tech-Jargon inflationar benutzt,
selten jedoch klar erklart. Ein Event Driven Stack ist eine Architektur, bei
der nicht mehr klassische API-Calls oder direkte Datenbankzugriffe den
Informationsaustausch bestimmen, sondern Events. Ein Event ist eine
Zustandsanderung, die von einem Service als Nachricht verdffentlicht und von
einem oder mehreren anderen Services konsumiert werden kann. Das klingt
simpel, ist aber ein radikaler Paradigmenwechsel im Vergleich zu
traditionellen, synchronen Architekturen.

Im Zentrum des Event Driven Stacks steht der Event Broker — auch Message
Broker oder Event Bus genannt. Hier werden Events als Messages persistent
gespeichert, verteilt und verwaltet. Bekannte Vertreter sind Apache Kafka,
RabbitMQ oder NATS. Services, die Events erzeugen, heillen Producer. Services,



die auf diese Events reagieren, heiBen Consumer. Die Events selbst werden
haufig in logischen Kanalen (Topics, Queues, Streams) organisiert und konnen
asynchron verarbeitet werden. Das A und 0: Lose Kopplung. Producer und
Consumer kennen sich nicht direkt, sondern kommunizieren ausschlieflich uber
den Broker.

Der Vorteil: Ein Event Driven Stack ermdglicht es, komplexe Systeme zu
zerlegen und unabhangig voneinander zu skalieren. Fehler in einem Service
blockieren nicht das gesamte System — solange der Event Broker lauft, bleibt
das System verfugbar. Zudem lassen sich Events speichern (Event Sourcing),
nachverarbeiten (Replay) und fur Auditing-Zwecke archivieren. Wer das Prinzip
verstanden hat, kann Systeme bauen, die “von Natur aus” skalierbar,
ausfallsicher und flexibel sind — und die klassischen Engpasse synchroner
Architekturen elegant umgehen.

Und jetzt, Hand aufs Herz: Wie viele deiner Projekte setzen wirklich auf
einen konsistenten Event Driven Stack — und wie viele verschleiern ihre REST-
API-Orgien unter einem Haufen von “Event-Handlern”, die eigentlich nur
Callback-Hoélle produzieren? Wer es ernst meint, setzt auf echte Events, keine
halbgaren Workarounds.

Die zentralen Komponenten
eines Event Driven Stacks:
Event Broker, Producer,
Consumer & mehr

Ein Event Driven Stack besteht nicht aus einer Wunderwaffe, sondern aus einem
fein abgestimmten Set von Technologien und Konzepten. Die wichtigsten
Elemente im Uberblick:

e Event Broker / Message Broker: Die Schaltzentrale, die Events empfangt,
speichert, verteilt und im Idealfall auch persistiert. Kafka, RabbitMQ,
NATS, AWS Kinesis oder Azure Event Hubs gehdren zu den Platzhirschen.
Der Broker sorgt fur Entkopplung, Skalierung und garantiert, dass kein
Event verloren geht.

e Producer: Services, die Events erzeugen und an den Broker schicken. Das
kann alles sein: eine Webanwendung, ein IoT-Device, ein Cronjob oder ein
Microservice. Wichtig: Producer sind dumm — sie wissen nichts daruber,
wer ihre Events konsumiert.

e Consumer: Services, die Events konsumieren und darauf reagieren. Ein
Consumer kann auf viele Topics horen und je nach Business Logic agieren:
Datenbank schreiben, neue Events erzeugen, externe Systeme triggern.

e Topics/Queues/Streams: Logische Kanale, Uber die Events gruppiert und
verteilt werden. Ein Topic ist nicht nur ein “Ordner”, sondern
definiert, wie Events verteilt, repliziert und ggf. partitioniert
werden.



e Event Sourcing und Event Store: Events werden nicht nur verarbeitet,
sondern als Quelle der Wahrheit gespeichert. Das erlaubt das
vollstandige Replay von Systemzustanden und eine lickenlose Historie.

e Event Schema Registry: Verwaltung und Versionierung der Event-Strukturen
(meist als JSON Schema, Avro oder Protobuf). Wer hier schlampt,
produziert Chaos beim Consumer-Upgrade.

Die groBe Kunst: ALl diese Komponenten missen nicht nur einzeln
funktionieren, sondern perfekt zusammenspielen. Jede Schwachstelle — etwa ein
falsch konfigurierter Topic, ein Consumer ohne Retry-Mechanismus oder ein
Broker ohne Persistenz — racht sich spatestens im Live-Betrieb. Und noch
schlimmer: Viele Entwickler verwechseln Event Driven mit “asynchronem
Spaghetti-Code”. Das ist kein Stack, sondern ein Wartungsalbtraum.

Ein echter Event Driven Stack basiert immer auf technischer Disziplin: klare
Schnittstellen, sauber definierte Event-Schemas, Monitoring auf allen Ebenen,
dedizierte Error-Handling-Strategien und — ganz wichtig — ein Broker, der
nicht bei 1.000 Events pro Sekunde in die Knie geht. Wer das ignoriert, baut
kein skalierbares System, sondern ein digitales Kartenhaus.

Wie Events, Producer, Consumer
und Topics technisch
zusammenspielen

Events sind die DNA eines Event Driven Stacks — aber wie funktioniert das
Zusammenspiel im Detail? Zeit fur einen Deep Dive in die technischen Ablaufe:

Ein Producer erzeugt einen Event, etwa “OrderPlaced”, “UserRegistered” oder
“PaymentFailed”. Dieser Event wird als Message an den Broker geschickt,
typischerweise in ein bestimmtes Topic. Der Broker uUbernimmt die
Weiterleitung, Persistenz und Verteilung. Consumer subscriben auf relevante
Topics und reagieren auf eingehende Events. Die Verarbeitung geschieht
asynchron — das heift, der Producer wartet nicht, bis alle Consumer fertig
sind. Das entkoppelt die Komponenten vollstandig und erlaubt eine massive
Parallelisierung.

Die technische Umsetzung sieht typischerweise so aus:

e Producer serialisiert das Event (z.B. als JSON oder Avro), versieht es
mit Metadaten (Timestamp, Correlation ID) und sendet es an den Broker.

e Der Broker nimmt die Nachricht entgegen, speichert sie persistent (je
nach Broker bis zu mehreren Tagen oder Wochen) und verteilt sie an alle
abonnierten Consumer.

e Consumer holen sich die Events, verarbeiten sie und bestatigen die
erfolgreiche Verarbeitung (Commit/Acknowledge). Bei Fehlern greifen
Retry-Strategien, Dead Letter Queues oder Alerting-Mechanismen.

e Wenn ein Consumer ausfallt, bleibt das Event im Topic/Queue und wird
erneut ausgeliefert, sobald der Consumer wieder verfugbar ist.



Der Clou: Neue Consumer kénnen jederzeit hinzugefliigt werden, ohne dass die
Producer angepasst werden mussen. So lassen sich Funktionen wie Analytics,
Monitoring, Auditing oder Third-Party-Integrationen schnell und sauber
andocken. Und niemand muss mehr Angst vor monolithischen Abhangigkeiten
haben.

Aber Achtung: Wer Event-Schemas andert, ohne Versionierung und strikte
Validierung zu implementieren, sorgt fur Inkompatibilitaten und
Produktionsausfalle. “Schema Evolution” ist kein Nice-to-have, sondern
Pflicht. Wer es ignoriert, darf nachts gerne den Pager tragen.

Warum Event Driven
Architekturen fur Skalierung,
Fehlerresilienz und
Echtzeitfahigkeit
unverzichtbar sind

Jetzt wird es ernst: Warum solltest du den Aufwand fir einen Event Driven
Stack Uberhaupt betreiben? Die Antwort: Weil klassische Architekturen in
Sachen Skalierung, Fehlerresilienz und Echtzeitfahigkeit einfach nicht
mithalten kdnnen. Wer heute noch groRe Systeme mit synchronen REST-Calls,
zentralen Datenbanken und harter Kopplung baut, bekommt spatestens bei
Lastspitzen oder Systemausfallen die Quittung.

Event Driven Stacks erlauben horizontale Skalierung “by design”. Neue
Consumer-Instanzen kdonnen einfach hinzugeflugt werden, ohne dass bestehende
Prozesse gestOort werden. Der Broker puffert Lastspitzen, Events konnen im
Batch oder verzogert verarbeitet werden, und der Systemzustand bleibt auch
bei Teil-Ausfallen konsistent. Durch Event Sourcing konnen Fehler ruckwirkend
analysiert, Systeme auf beliebige Zeitpunkte zurickgesetzt und
Datenintegritat garantiert werden.

Echtzeitfahigkeit ist ein weiteres Killer-Feature: Events werden innerhalb
von Millisekunden verteilt, Consumer koénnen sofort reagieren — perfekt fir
Analytics, Monitoring, Fraud Detection und IoT-Anwendungen. Klassische
Cronjobs oder Pull-basierte Systeme sehen dagegen alt aus. Und sollte ein
Service schlappmachen, verarbeitet er einfach spater weiter — kein
Datenverlust, keine Blockade.

Naturlich gibt es Herausforderungen: Eventual Consistency, Duplicate
Delivery, Out-of-Order Processing. Aber dafur gibt es LOsungen — Idempotenz,
genau-once-Semantik, dedizierte Event Stores und Monitoring. Wer sich davor
druckt, bekommt am Ende ein System, das zwar “irgendwie lauft”, aber nie an
die Performance, Zuverlassigkeit und Flexibilitat eines echten Event Driven
Stacks heranreicht.



Die grofSten Mythen & Fehler
beim Event Driven Stack — und
wie du sie vermeidest

Event Driven klingt schick — aber viele Projekte scheitern an immer denselben
Missverstandnissen. Hier die grofRten Stolperfallen und was du dagegen tun
kannst:

e “Events sind nur fur Analytics und Logging”: Falsch. Ein Event Driven
Stack ist die Basis fur die gesamte Business-Logik, nicht nur fur
Telemetrie.

e “Ein Broker reicht, den Rest improvisiere ich”: Wer ohne sauberes Schema
Management, Monitoring und Retry-Strategien startet, produziert Chaos.

e “Eventual Consistency ist ein No-Go”: Moderne Systeme leben mit
kurzzeitigen Inkonsistenzen. Entscheidend ist, dass das System sich
selbststandig konsolidiert.

e “Events sind immer schnell”: Alles hangt am Broker. Falsche
Partitionierung, zu kleine Consumer-Gruppen oder fehlendes Backpressure-
Management fihren zu Latenz-Hélle.

e “Events ersetzen alle APIs”: Unsinn. Es gibt weiterhin Use Cases fir
synchrone Schnittstellen — aber der Default sollte Event First sein.

Merke: Der groBRte Fehler ist es, Events einfach “draufzupflanzen”, ohne die
Infrastruktur und Prozesse darauf auszurichten. Ein Event Driven Stack ist
kein Add-on, sondern eine eigene Disziplin. Wer sie ignoriert, baut einen
Wartungsalbtraum — und wird in der ersten Lastspitze gnadenlos abgestraft.

Die wichtigsten Lessons Learned:

e Versioniere und validiere alle Event-Schemas.

Implementiere Monitoring, Alerting und Dead Letter Queues von Anfang an.
Plane mit Eventual Consistency und baue Idempotenz in jede Consumer -
Logik ein.

Skaliere Broker und Consumer unabhangig voneinander.

Teste das gesamte System regelmaBig auf Backpressure und Fehlerfalle.

Die wichtigsten Tools &
Frameworks fur den Event
Driven Stack

Ein Event Driven Stack steht und fallt mit der richtigen Toolchain. Hier die
Platzhirsche, die du kennen und beherrschen musst:

e Apache Kafka: Der De-facto-Standard fur Event Streaming. Hohe



Durchsatzraten, starke Persistenz, machtige Partitionierung und ein
riesiges Okosystem. Wer skalieren will, kommt an Kafka kaum vorbei.

e RabbitMQ: Solide Message Queue mit Fokus auf Zuverlassigkeit, Routing
und einfache Integration. Perfekt fir klassische Messaging-Patterns und
moderate Event-Volumina.

e NATS: Extrem leichtgewichtig, super schnell und Cloud Native. Ideal flr
Microservices, bei denen Latenz und Ressourcenverbrauch kritisch sind.
e EventStoreDB: Speziell fur Event Sourcing entwickelt. Bietet genau-once-
Semantik, Versionierung und Replay-Funktionalitaten auf Enterprise-

Niveau.

e Schema Registries: Tools wie Confluent Schema Registry oder Apicurio
verwalten und versionieren Event-Schemas — ein Muss fur sauberes Event
Management.

e Frameworks & Libraries: Spring Cloud Stream, Akka Streams, Axon,
MassTransit, NestJS/EventEmitter — je nach Programmiersprache und
Anwendungsfall.

Die Auswahl hangt von Use Case, Skalierungsbedarf und Team-Kompetenz ab. Aber
eines gilt immer: Wer die Basics nicht beherrscht, wird auch mit dem fancy
Toolstack nur Probleme multiplizieren. Also: Erst Architektur und Prozesse
sauber aufsetzen — dann Tools wahlen.

Schritt-fur-Schritt-Anleitung:
Dein erster Event Driven Stack

Genug Theorie, jetzt wird geliefert. So setzt du in zehn Schritten einen
funktionierenden Event Driven Stack auf:

1. Architektur planen: Welche Services sollen Producer, welche Consumer
sein? Welche Events werden bendtigt? Wie sieht die Event-Domain aus?

2. Broker auswahlen und aufsetzen: Kafka fir hohe Volumina, RabbitMQ fir
klassische Patterns, NATS flir Speed. Installation, Konfiguration,
Monitoring von Anfang an.

3. Topics/Queues definieren: Logische Trennung nach Business-Domains, klare
Namenskonventionen, Partitionierung beachten.

4. Event Schemas festlegen: Prazise, versionierte Schemas (z.B.
Avro/Protobuf/JSON Schema). Validierung und Evolution von Tag 1 an
implementieren.

5. Producer entwickeln: Saubere Event-Erzeugung, Fehlerhandling,
Rickmeldung bei Delivery-Fails.

6. Consumer entwickeln: Idempotente Verarbeitung, Retry-Mechanismen, Dead
Letter Queues integrieren.

7. Monitoring & Logging einrichten: Broker-Health, Event-Durchsatz,
Fehlerquoten, Latenzen Uberwachen. Tools wie Prometheus, Grafana, ELK-
Stack verwenden.

8. Load Testing & Backpressure testen: Wie reagiert das System bei 10x,
100x Last? Wo entstehen Bottlenecks?

9. Automatisiertes Deployment: Containerisierung (Docker), Orchestrierung
(Kubernetes), CI/CD fur Producer und Consumer.



10. Disaster Recovery planen: Backups fir den Broker, Replay-Strategien,
Event-Archivierung, Failover-Tests durchfihren.

Wer diese Schritte sauber durchzieht, hat nicht nur einen Event Driven Stack,
sondern auch eine Architektur, die auf Wachstum, Wandel und Ausfallsicherheit
ausgelegt ist. Alles andere ist Spielerei.

Fazit: Event Driven Stack —
Pflichtprogramm fur moderne
Systeme

Der Event Driven Stack ist kein Buzzword, sondern der neue Standard flr
performante, skalierbare und resiliente Architekturen. Wer heute noch auf
klassische, synchron gekoppelte Systeme setzt, sabotiert seine
Zukunftsfahigkeit — und wird von der Konkurrenz gnadenlos Uberholt. Ein
sauber aufgesetzter Event Driven Stack entkoppelt Komponenten, erlaubt
Echtzeitreaktionen und macht Systeme fit flr das, was morgen auf sie zukommt:
mehr Daten, mehr Nutzer, mehr Komplexitat.

Naturlich ist der Einstieg anspruchsvoll. Aber die Alternative — weiter mit
monolithischen Systemen und REST-Orgien rumzudoktern — ist keine Ldsung,
sondern ein Rezept fur Stillstand. Wer den Mut hat, sich mit den technischen
Details auseinanderzusetzen, gewinnt: an Flexibilitat, Geschwindigkeit und
Innovationskraft. Die Zukunft ist Event Driven — und sie ist schon langst da.



