Event Driven Stack
Vergleich: Welcher passt
wirklich?

Category: Tools
geschrieben von Tobias Hager | 7. September 2025

KAFKA | dill LﬁANTMﬂJ

EVENTBRIDGE

Event Driven Stack
Vergleich: Welcher passt
wirklich?

Alle reden von ,Event Driven”, alle wollen skalieren, alle behaupten, sie
hatten den besten Stack. Aber mal ehrlich: Wer checkt wirklich, was hinter
Kafka, RabbitMQ, AWS EventBridge und Co. steckt, und welcher Stack fur was
wirklich taugt? In diesem Artikel gibt’'s das schonungslose, technische Deep
Dive-Update — ohne Marketing-Blabla, aber mit brutal ehrlicher Antwort, warum
dein Event Driven Stack mehr als ein schickes Buzzword sein muss. Spoiler:
Wer hier nach Kuschel-Content sucht, ist falsch abgebogen.

e Was ein Event Driven Stack wirklich ist und warum die meisten


https://404.marketing/event-driven-stack-vergleich/
https://404.marketing/event-driven-stack-vergleich/
https://404.marketing/event-driven-stack-vergleich/

Implementierungen daran scheitern

e Die wichtigsten Komponenten: Message Broker, Event Bus, Event Store &
Co. — und deren technische Unterschiede

e Vergleich der fihrenden Technologien: Kafka vs. RabbitMQ vs. AWS
EventBridge vs. NATS — mit klaren Pros & Cons

e Worauf es bei der Auswahl des passenden Event Driven Stacks wirklich
ankommt — aus Entwicklersicht, nicht aus Marketingsicht

e Performance, Skalierbarkeit und Latenz: Was jeder Stack in der Praxis
wirklich leistet (und wo die Mythen liegen)

e Welche Fehler in der Event Driven Architektur Projekte regelmallig killen
— und wie du sie verhinderst

e Schritt-fur-Schritt-Checkliste: So wahlst du deinen Event Driven Stack
richtig aus

e Warum Cloud-native vs. Open Source nicht nur eine Kostenfrage ist

e Was 2025 beim Thema Event Driven Architecture wirklich zahlt — und wie
du dich gegen die Konkurrenz behauptest

Event Driven Architektur ist der feuchte Traum jedes CTOs, der nachts von
Microservices und ,echter” Skalierbarkeit schwarmt. Doch in der Realitat
scheitern 90 Prozent der Projekte spatestens dann, wenn es um saubere Event-
Definitionen, persistente Event Stores und den richtigen Stack geht. Wer
glaubt, das nachste Kafka-Cluster sei die Antwort auf alle Probleme, hat das
Thema nicht verstanden. Hier geht’s nicht um Buzzwords. Es geht um
Systemdesign, Durchsatz, Latenz, Konsistenz und vor allem: um die Fahigkeit,
Fehler zu vermeiden, bevor sie dich die nachste Million kosten. Zeit, den
Event Driven Stack wirklich zu verstehen — und zwar bis ins letzte Bit.

Was 1st ein Event Driven Stack
wirklich? — Architektur,
Komponenten, Buzzword-Bingo

Ein Event Driven Stack ist kein Produkt, kein Framework und schon gar kein
Plug-and-Play-Modul. Es ist ein Architekturkonzept, das Systeme darauf
auslegt, auf Ereignisse (Events) in Echtzeit oder Near-Realtime zu reagieren.
Die Idee: Statt Request/Response-Overkill setzt du auf lose gekoppelte
Microservices, die uber Events miteinander kommunizieren. Klingt cool? Ist es
auch — wenn man’s richtig macht.

Die typischen Komponenten eines Event Driven Stacks:

e Event Producer: Services oder Anwendungen, die Events erzeugen und in
einen Broker schicken

e Message Broker/Event Bus: Der zentrale Router, der Events empfangt,
speichert und an Subscriber verteilt — hier kommen Kafka, RabbitMQ, NATS
oder EventBridge ins Spiel

e Event Consumer: Services, die auf bestimmte Events reagieren und
Aktionen auslosen

e Event Store: Persistente Speicherung aller Events, haufig als ,Single



Source of Truth“ fur Auditing und Replaying
e Schema Registry: Verwaltung von Event-Schemas, damit Producer und
Consumer dieselbe Sprache sprechen

Soweit die Theorie. In der Praxis stolpern die meisten schon bei der sauberen
Definition von Events (was ist ein Event, was ein Command?), der
Konsistenzsicherung und dem Zusammenspiel aus Broker, Store und Processing
Layer. Wer hier auf halbgare Losungen setzt, produziert Chaos statt
Skalierbarkeit.

Das groRte Missverstandnis: Ein Event Driven Stack bedeutet nicht automatisch
sasynchron und skalierbar”. Ohne saubere Architektur und die richtige Tool-
Auswahl wird aus dem Traum schnell ein Wartungs-Albtraum mit Race Conditions,
Message Loss und Debugging-Holle.

Katka, RabbitMQ, AWS
EventBridge, NATS — Der grofe
Vergleich der Event Driven
Technologien

Jetzt wird’s ernst. Jeder kennt die Namen, aber kaum einer versteht die
wirklichen Unterschiede. Die Wahl des Event Driven Stacks entscheidet lber
Durchsatz, Latenz, Wartbarkeit und die Zukunftsfahigkeit deiner Systeme. Zeit
fir den tabulosen Tech-Vergleich der Big Player:

e Apache Kafka

o Starken: Massiv skalierbar, hohe Durchsatzraten (Millionen
Messages/sec), persistente Speicherung, Event Replaying per
Default, starke Okosystem-Tools (Kafka Streams, Connect, Schema
Registry)

o Schwachen: Komplexes Setup, anspruchsvolles Cluster-Management,
Ressourcenfresser, hohe Latenz bei kleinen Nachrichten, nicht fur
klassische Queueing-Patterns gebaut

o Use Case: Echtzeit-Analytics, Event Sourcing, Big Data Pipelines,
Auditing

e RabbitMQ

o Starken: Einfaches Setup, flexible Routing-Patterns (Fanout, Topic,
Direct), niedrige Latenz, gute Integration in klassische Message
Queues

o Schwachen: Kein persistentes Event Store-Konzept, limitiertes Event
Replaying, Performance-Grenzen bei sehr hoher Last, weniger
geeignet fur Big Data

o Use Case: Task-Queues, Microservice-Kommunikation, klassische
Message-Patterns

e AWS EventBridge
o Starken: Voll gemanagt, nahtlose Integration in AWS Services,



beliebig skalierbar, Serverless, Pay-per-Use

o Schwachen: Vendor Lock-in, komplexe Preisstruktur, begrenzte
Latenz- und Durchsatzgarantien, Black-Box-Charakter, Debugging oft
eine Qual

o Use Case: Cloud-native Architekturen, Serverless Event Processing,
Integration zwischen AWS Services

e NATS

o Starken: Ultraleicht, extrem geringe Latenz (Millisekunden-
Bereich), einfache Installation, Cluster- und JetStream-Extension
fuar Event Streaming

o Schwachen: Weniger Features, kein vollwertiger persistenter Event
Store (ohne JetStream), kleinere Community, weniger Enterprise-
Support

o Use Case: IoT, Edge Computing, High Performance Microservices mit
Fokus auf Geschwindigkeit

Und dann gibt es noch Exoten wie Apache Pulsar, Google Pub/Sub oder Redpanda.
Jeder Stack hat seine Daseinsberechtigung, aber: Kein Stack kann alles
gleichzeitig. Wer Kafka fir klassische Queue-Aufgaben nutzt, verschwendet
Ressourcen. Wer EventBridge flir kritische Audit-Trails einsetzt, lauft ins
Risiko, weil Replaying und Persistenz nicht garantiert sind. Kurz: Stack-
Auswahl ist kein Religionsthema, sondern eine Frage von Anforderungen, Use
Case und Skillset.

Event Driven Stack Auswahl:
Worauf du wirklich achten
musst (und was Marketingleute
dir verschweigen)

Die perfekte Event Driven Architektur gibt es nicht, aber den perfekten Stack
fir deinen Use Case. Leider werden die wichtigsten Fragen oft ignoriert, weil
sie unbequem sind — oder weil sie tiefes technisches Verstandnis erfordern.
Hier die Kriterien, die wirklich zahlen:

e Durchsatz und Latenz: Muss dein System Millionen von Events pro Sekunde
verarbeiten, oder reichen hundert pro Minute? Kafka rockt bei Durchsatz,
NATS bei Latenz.

e Persistenz und Replaying: Brauchst du einen Event Store, um Events
spater erneut zu verarbeiten oder zu auditieren? Nur Kafka (und mit
JetStream auch NATS) liefern das wirklich out-of-the-box.

e Fehlerhandling und Delivery Guarantees: Genau-once-Delivery ist das
heilige Gral, aber die meisten Stacks bieten nur At-least-once oder
Best-effort. Priufe, was du wirklich brauchst — und was dein Stack kann.

e Skalierbarkeit und Wartbarkeit: Wie viele Nodes, wie viel Netzwerk-
Traffic, wie aufwendig ist das Monitoring? Ein Kafka-Cluster ist kein
Hobby-Projekt, RabbitMQ ist bei hoher Last schnell am Limit.



e Integrationen und Community: Gibt es fertige Connectors, SDKs,
Monitoring-Tools? Wie schnell findest du Hilfe im Notfall?

e Cloud-native vs. Self-Hosted: Managed Services wie EventBridge nehmen
dir Arbeit ab, kosten aber Flexibilitat und Kontrolle. Open Source wie
NATS gibt dir alles — inklusive Verantwortung.

Der Kardinalfehler: Viele Teams wahlen ,den, den alle nehmen”, statt ihren
Stack auf den eigenen Anwendungsfall zuzuschneiden. Die Folge: Stack-Overkill
oder Featurelicken, die dich Monate spater einholen. Wer sich nicht brutal
ehrlich mit Anforderungen und Know-how auseinandersetzt, baut sich einen
Event Driven Frankenstein zusammen.

Das Mantra: Technologie ist kein Selbstzweck. Jeder Stack hat technische
Limits — und die meisten werden in Marketing-PDFs verschwiegen. Wer sich von
Vendor-Versprechen blenden lasst, zahlt mit Performance, Stabilitat und am
Ende mit dem eigenen Job.

Performance, Skalierbarkeit,
Latenz: Was die Event Driven
Stacks wirklich leilisten

Jetzt geht’s ans Eingemachte. Jeder Event Driven Stack wird mit sagenhaften
Durchsatzraten, minimaler Latenz und unbegrenzter Skalierbarkeit beworben.
Die Realitat sieht anders aus — und hangt von deinem konkreten Setup,
Netzwerk, Hardware und Use Case ab. Zeit, die Marketingblasen platzen zu
lassen:

Kafka: Theoretisch mehrere Millionen Events pro Sekunde, aber nur bei
optimalem Hardware-Setup und Tuning. Latenzen von 2-20ms, aber unter hoher
Last und kleinen Messages kann’s schnell in den dreistelligen Bereich gehen.
Skalierung horizontal, aber teuer im Betrieb und Monitoring. Ohne
Expertenwissen: Katastrophe vorprogrammiert.

RabbitMQ: Schnell bei kleiner bis mittlerer Last, Latenzen oft unter 10ms.
Doch bei zigtausenden Messages pro Sekunde geht RabbitMQ die Puste aus.
Persistenz kostet Performance, komplexe Routing-Patterns erschweren das
Debugging.

EventBridge: Skalierung in der AWS-Cloud quasi unbegrenzt — solange das Konto
mitmacht. Latenzen meist im niedrigen Sekundenbereich, fur Echtzeit kritisch.
Debugging schwierig, Black-Box-Charakter. Fur Auditing und Compliance ein
Risiko.

NATS: Der Latenz-Konig — Millisekunden sind Standard, Durchsatz aber
limitiert durch Storage und Netzwerk. JetStream bringt Persistenz, aber auf
Kosten der Einfachheit. Perfekt fir ,Fire and Forget”, weniger fur Big Data.

Wichtige Faustregel: Die allermeisten Probleme entstehen nicht durch den
Stack, sondern durch falsche Architekturentscheidungen. Wer Kafka mit 100



Consumer Groups pro Topic betreibt, wundert sich Uber Performance-Kollaps.
Wer RabbitMQ fur Big Data missbraucht, bekommt Message Loss. Und wer
EventBridge als Event Store missversteht, hat das nachste Compliance-Audit
eigentlich schon verloren.

Fehler 1n Event Driven
Architekturen — und wie du sie
ghadenlos vermeidest

Die Liste der Fehler ist lang, aber die Klassiker wiederholen sich in jedem
zweiten Projekt. Wer sie kennt, kann sie verhindern — und spart sich Monate
an Debugging, Downtime und Datenverlust.

e Keine saubere Event-Definition: Unklare Events flhren zu doppelter
Verarbeitung, Inkonsistenzen und Debugging-HOlle. Jedes Event braucht
Versionierung, Schemas und klare Payloads.

e Fehlendes Error Handling: Events verschwinden im Nirvana, weil Dead
Letter Queues fehlen oder falsch konfiguriert sind. At-least-once-
Delivery ist Standard, aber idempotente Consumer sind Pflicht.

e Fehlende Monitoring- und Tracing-Tools: Ohne Observability ist jeder
Event Driven Stack eine Black Box. Nutze Distributed Tracing
(OpenTelemetry, Jaeger) und Metriken (Prometheus, Grafana).

e Event Store vs. Message Queue verwechselt: Wer Messaging und Event
Sourcing nicht trennt, produziert Chaos. Kafka ist kein Task-Queue-
Ersatz, RabbitMQ kein Big Data Store.

e Vendor Lock-in unterschatzt: Cloud-native Ldsungen wie EventBridge sind
bequem, aber die Migration kann zum Desaster werden.

Und das Wichtigste: Teste mit echten Lastszenarien. Viele Stacks brechen erst
unter Realbedingungen ein — und dann ist es zu spat. Wer nicht regelmafig
Chaos Engineering und Lasttests fahrt, betreibt Event Driven Roulette.

Schritt-fur-Schritt-
Checkliste: So findest du den
richtigen Event Driven Stack

e 1. Anforderungen definieren: Wie viele Events pro Sekunde? Wie wichtig
ist Persistenz? Wie kritisch sind Latenzen?

e 2. Event- und Messaging-Patterns klaren: Brauchst du Event Sourcing,
klassische Queues, Pub/Sub, oder alles zusammen?

e 3. Skillset und Team-Know-how prifen: Bringt dein Team Kafka-Cluster-
Management mit? Oder ist Managed Service die bessere Wahl?

e 4. Integrationen und Okosystem-Check: Gibt es fertige Connectors fir



Datenbanken, Monitoring, Alerting?

e 5. Testen, Testen, Testen: Lasttests, Failure Scenarios, Recovery —
alles vor dem Go Live durchspielen.

e 6. Monitoring und Observability einbauen: Ohne Telemetrie keine
Kontrolle — von Anfang an einplanen.

e 7. Kosten und Betrieb realistisch kalkulieren: Was kostet Cluster-
Betrieb, Cloud-Events, Support?

e 8. Dokumentation und Event-Schemas pflegen: Ohne Schema Registry und
Versionierung ist jeder Stack nach sechs Monaten Legacy.

Fazit: Event Driven
Architektur 2025 — Mehr als
nur Stack-Entscheidung

Wer 2025 ein Event Driven System bauen will, muss mehr draufhaben als ein
paar Buzzwords und ein Kafka-Docker-Compose. Der Event Driven Stack ist das
technische Ruckgrat moderner Microservices — aber nur, wenn er zum Use Case,
zum Team und zur Infrastruktur passt. Es gibt keinen perfekten Stack, nur die
perfekte Lésung fir deine Anforderungen. Wer blind dem Hype folgt, zahlt mit
Downtime, Datenverlust und Frustration.

Die Moral von der Geschichte: Nicht der Stack entscheidet Uber Erfolg oder
Scheitern, sondern Architektur, Know-how und die Bereitschaft, brutal ehrlich
auf technische Limits zu schauen. Wer Event Driven wirklich meistern will,
muss sich tief in Technologie, Patterns und Monitoring reinknien — und darf
sich nie von Marketing-Sprech blenden lassen. Willkommen im echten Leben der
Event Driven Architekturen. Willkommen bei 404.



