Headless CMS Vergleich:
Welches System passt
wirklich?

Category: Content
geschrieben von Tobias Hager | 4. November 2025

PEERE R e

R g-jﬂ{__z
Headless CMS Vergleich:
Welches System passt
wirklich?

Du kannst noch so viele hippe Buzzwords ins Meeting werfen — “Headless”,
“API-first”, “Composable” — und trotzdem lauft dein Content-Stack am Ende wie
ein Trabant mit plattem Reifen? Willkommen im Dschungel der Headless CMS. Die
Versprechen sind grofs, die Realitat oft bitter: Komplexitat,
Integrationshirden und jede Menge Marketing-Blabla. In diesem Artikel
bekommst du die gnadenlos ehrliche Analyse, welche Headless CMS wirklich
liefern, worauf es technisch ankommt — und welches System zu deinem Projekt
(und nicht nur zum Ego deiner IT) passt.


https://404.marketing/headless-cms-vergleich-2024/
https://404.marketing/headless-cms-vergleich-2024/
https://404.marketing/headless-cms-vergleich-2024/

e Was ein Headless CMS wirklich ist — und warum “modern” nicht immer
besser bedeutet

e Die wichtigsten technischen Unterschiede zwischen Headless, Decoupled
und traditionellen CMS

e Vergleich der fihrenden Headless CMS: Strapi, Contentful, Sanity,
Storyblok, Directus und mehr

e API-Design, Integrationen und Developer Experience: Wer halt die
Versprechen?

e Security, Skalierbarkeit und Hosting: Die unterschatzten Tech-Faktoren

e On-Premise vs. SaaS vs. Open Source: Wie sich die Systeme wirklich
unterscheiden

e Wann ein Headless CMS dein Projekt ruiniert — und wann es dich nach
vorne katapultiert

e Konkrete Entscheidungshilfen: So findest du das passende System fur
deine Anforderungen

e Die grolBten Headless-Mythen und warum du nicht jedem Whitepaper glauben
solltest

e Fazit: Kein System ist perfekt — aber mit diesen Kriterien findest du
die beste LOsung

Headless CMS sind die neuen Lieblinge der Tech-Szene — zumindest, wenn man
auf den Hype der letzten Jahre hereinfallt. “Flexibel, skalierbar,
zukunftssicher!” schreien die Anbieter. “Die Lésung fir alle Content-
Probleme!” jubeln die Whitepaper. Die Wahrheit ist: Ein Headless CMS kann dir
das Genick brechen, wenn du nicht genau weift, was du tust. Es gibt keinen
One-Size-Fits-All-Ansatz. Die Systeme unterscheiden sich massiv in
Architektur, API-Design, Erweiterbarkeit, Sicherheit und Deployment-Modellen.
Wer hier nur auf das bunteste Interface oder das lauteste Marketing setzt,
zahlt am Ende mit Frust, Kosten und technischen Sackgassen. In diesem Artikel
zerlegen wir die wichtigsten Systeme, schauen hinter die Buzzwords — und
liefern dir den ultimativen Headless CMS Vergleich, der wirklich Substanz
hat.

Was 1st ein Headless CMS?
Technische Grundlagen,
Vorteile und Fallstricke

Ein Headless CMS (Content Management System) trennt Backend und Frontend
radikal voneinander: Die Inhalte werden zentral verwaltet, aber nicht mehr
von einem festen Templating-System prasentiert. Stattdessen liefert das
Headless CMS Content als strukturierte Daten — meist via REST- oder GraphQL-
API — an beliebige Frontends aus. Diese kénnen Websites, Apps, IoT-Gerate
oder digitale Displays sein. Im Unterschied dazu steht das klassische
“Coupled” CMS, bei dem Backend und Frontend eng verzahnt, oft sogar
untrennbar miteinander verbunden sind.

Die Vorteile eines Headless CMS liegen auf der Hand, zumindest aus



technischer Sicht: absolute Flexibilitat bei der Wahl des Frontends, eine
saubere Trennung von Content und Prasentation, bessere Mdglichkeiten zur
Wiederverwendung von Inhalten und ein API-first-Ansatz, der Integrationen in
andere Systeme massiv vereinfacht. Fir Entwickler ist das ein Traum —
zumindest solange die API performant, dokumentiert und stabil ist.

Doch die Medaille hat eine hassliche Ruckseite. Headless CMS sind keine
magischen “Plug & Play”-Wunder. Ohne ein eigenes Frontend-Team, das die APIs
angebunden bekommt, stehst du schnell im Regen. Redakteure verlieren gewohnte
“Live-Ansichten” und mussen sich mit abstrakten Datenstrukturen anfreunden.
Die Komplexitat im Deployment steigt, und plotzlich bist du nicht mehr nur
CMS-Admin, sondern DevOps, API-Designer und Architekt in Personalunion. Und
wehe, die API-Dokumentation ist schlecht oder die Rechteverwaltung ein Witz —
dann wird aus “Headless Freedom” ganz schnell ein “Headless Chaos”.

Im Headless CMS Vergleich ist es entscheidend, wie sauber die API
implementiert ist, wie flexibel Datenmodelle aufgebaut werden kénnen, wie
granular Rollen- und Rechtekonzepte sind und wie gut das System mit
bestehenden Stacks harmoniert. Die Unterschiede sind gewaltig — und die
meisten Anbieter verschweigen die wahren Kosten, Herausforderungen und
technischen Schulden, die ein Umstieg mit sich bringt.

Headless, Decoupled oder
klassisch? Architektur, APIs
und die Qual der Wahl

Wer beim Headless CMS Vergleich nicht blind ins Marketing-Roulette stolpern
will, muss die architektonischen Unterschiede verstehen. Es gibt drei
grundsatzliche Ansatze:

e Klassisches CMS: Backend und Frontend sind fest gekoppelt. Das System
rendert direkt HTML, meist mit integriertem Templating (z.B. WordPress,
TYPO3, Drupal classic).

e Decoupled CMS: Das Backend liefert sowohl HTML fiir klassische Webseiten
als auch APIs fir andere Kanale. Es ist flexibler, aber nicht komplett
“headless”.

e Headless CMS: Nur noch Content-API, keine eigene Prasentationsschicht.
Frontends konsumieren die Daten via REST, GraphQL oder Webhooks.

Der Unterschied ist nicht nur akademisch, sondern technisch relevant. Ein
echtes Headless CMS zwingt dich zur vollstandigen Trennung: Kein WYSIWYG,
keine Vorschau, keine Templates. Alles, was du siehst, wird im Frontend
gebaut — mit React, Vue, Angular, Svelte oder sonstwas. Das klingt nach
Freiheit, ist aber auch eine massive Verantwortung fir das Entwicklungsteam.

Die API ist das Herzstick jedes Headless CMS. REST-APIs sind Standard, aber
immer mehr Systeme setzen auf GraphQL, weil damit komplexe Datenabfragen
effizienter und flexibler werden. Wer ein API-Design “von der Stange”



bekommt, zahlt schnell mit Limitierungen: fehlende Filteroptionen, schlechte
Dokumentation, inkonsistente Endpunkte, Performance-Probleme bei grofen
Datenmengen. Gerade bei Headless CMS mit “API-first”-Anspruch trennt sich
hier die Spreu vom Weizen.

Einige Systeme bieten hybride Ansatze (“Decoupled”), bei denen du sowohl
Headless-APIs als auch traditionelle Templating-Funktionen nutzen kannst. Das
kann flir den schleichenden Umstieg charmant sein — ist aber oft ein
technischer Kompromiss, der am Ende niemanden so richtig glucklich macht. Im
Headless CMS Vergleich solltest du gnadenlos auf die API-Qualitat, die
Dokumentation und die Erweiterungsmodglichkeiten achten. Sonst zahlst du am
Ende fur eine Architektur, die dich einsperrt statt befreit.

Headless CMS im Vergleich:
Strapi, Contentful, Sanity,
Storyblok, Directus, Payload &
Co.

Jetzt wird’s konkret. Im Headless CMS Vergleich zahlen die Platzhirsche:
Strapi, Contentful, Sanity, Storyblok, Directus, Payload, Prismic und einige
Newcomer. Jedes dieser Systeme hat seine eigenen Starken, Schwachen,
Preismodelle und technischen Eigenheiten. Wer sich nicht blenden lassen will,
muss tief in die Details gehen. Hier ein Uberblick lber die wichtigsten
Kandidaten:

e Strapi: Open Source, Node.js-basiert, vollstandig selbst hostbar. Sehr
flexibles Datenmodell, REST- und GraphQL-API, einfache Erweiterbarkeit
mit Plug-ins. Starke Community, aber Security und Skalierung sind
Eigenverantwortung. Deployment kann anspruchsvoll werden, wenn du nicht
weilst, was du tust.

e Contentful: SaaS-Pionier, extrem ausgereifte APIs, erstklassige
Dokumentation. Rollen- und Rechteverwaltung auf Enterprise-Level, aber
teuer und mit harten API-Limits. Keine On-Premise-Option, und bei
komplexen Anforderungen wird’s schnell unibersichtlich.

e Sanity: Extrem flexibles Content Studio, Realtime-Kollaboration, eigene
Query-Sprache (GROQ). APIs sind schnell, aber gewdhnungsbedurftig.
Hosting ist ausschlieflich SaaS, Preisgestaltung intransparent. Wer
volle Kontrolle will, stoBt an Grenzen.

e Storyblok: Visual Editor, der fir Headless-Verhaltnisse fast schon
“WYSIWYG” ist. Starke Multichannel-Features, sehr gute Developer
Experience. APIs performant, aber proprietar. Preislich im Mittelfeld,
aber nicht fur jedes Szenario geeignet.

e Directus: Open Source, Datenbank-agnostisch, lauft auf MySQL, PostgreSQL
und SQLite. REST- und GraphQL-API, sehr granular anpassbar. On-Premise
moglich, aber UI und UX sind nicht immer state-of-the-art.

e Payload: Node.js-basiert, Open Source, Fokus auf



Entwicklerfreundlichkeit. Komplett selbst hostbar, schlanke APIs, sehr
gut fur maBgeschneiderte Projekte. Noch relativ jung, weniger
Enterprise-Features als die Grolden.

Jedes System hat eine eigene Philosophie, eigene Starken — und seine
Schattenseiten. Strapi punktet bei Flexibilitat und Community, Contentful bei
Enterprise-Features, Sanity bei Kollaboration, Storyblok bei
Redakteursfreundlichkeit, Directus bei Datenbankfreiheit und Payload bei
Customizability. Die Wahrheit: Es gibt kein perfektes Headless CMS. Wer den
Headless CMS Vergleich ernst meint, muss sich brutal ehrlich fragen, was im
eigenen Projekt wirklich zahlt — und darf sich nicht von Marketing-Features
blenden lassen, die in der Realitat selten gebraucht werden.

API-Design, Datenmodellierung, Authentifizierung, Integrationsmdglichkeiten,
Migration, Hosting und Support — das sind die Faktoren, die in der Praxis
entscheiden, ob dein Headless CMS ein Erfolg wird oder ein Fass ohne Boden.
Und genau hier fallen viele Systeme im Detailtest durch.

API-Design, Developer
Experience und Integrationen:
Die unterschatzten
Erfolgsfaktoren

Ein Headless CMS steht und fallt mit seiner API. Klingt wie ein Mantra, ist
aber die harte Realitat. Zu viele Systeme setzen auf “API-first” und liefern
dann irgendwas, das flur Enterprise-Integrationen oder komplexe Frontends
einfach nicht ausreicht. API-Rate-Limits, inkonsistente Endpunkte, fehlende
Filterméglichkeiten, mangelhafte Authentifizierung — all das killt die
Developer Experience schneller als jede schlechte Doku.

REST ist Standard, aber GraphQL gewinnt an Boden, weil sich damit komplexe
Datenstrukturen granular abfragen lassen. Systeme wie Contentful, Sanity und
Strapi liefern hier solide Ansatze, aber auch sie stoBen bei echten
Enterprise-Anforderungen oft an Grenzen. Ein echtes API-first-Headless CMS
muss skalieren konnen, darf keine willkirlichen Limits setzen, muss
Versionierung und Caching im Griff haben und die Authentifizierung granular
steuern konnen — OAuth, JWT, API Keys, alles dabei.

Integrationen sind das zweite groRe Thema. Kein Headless CMS lebt im Vakuum.
Du willst Salesforce, HubSpot, E-Commerce, Analytics, Translation-Services
oder eigene Microservices andocken? Dann muss das System Webhooks, flexible
SDKs, Middleware und eine saubere Event-Struktur bieten. Die Realitat: Viele
Headless CMS bieten nur Plug-ins fir die 08/15-Usecases. Wer wirklich
hochintegrierte Prozesse bauen will, landet schnell beim Custom-Coding oder
in den API-Limits der Anbieter.

Die Developer Experience (DX) ist mit das wichtigste Auswahlkriterium im



Headless CMS Vergleich. Was nitzt dir eine “moderne” API, wenn das SDK ein
Witz ist, die Dokumentation aus zwei PDF-Seiten besteht und der Support keine
Ahnung von deinem Stack hat? Wer wirklich skalieren will, testet die APIs
vorab auf Herz und Nieren — und lasst die Finger von Systemen, die schon im
Proof-of-Concept straucheln.

Sicherheit, Skalierbarkeit,
Hosting und Open Source vs.
SaaS: Wichtige
Vergleichskriterien

Security wird beim Headless Hype gerne kleingeredet — ein fataler Fehler. Je
mehr Systeme du integrierst, je offener deine APIs sind, desto gréBer die
Angriffsflache. Ein Headless CMS muss Authentifizierung, Rollen- und
Rechtemanagement, Audit-Logs und API-Rate-Limits sauber implementieren. Viele
Open-Source-LOosungen wie Strapi oder Directus Uberlassen Security dem
Betreiber — das ist machtig, aber auch gefahrlich, wenn du keine erfahrenen
DevOps im Team hast.

Skalierbarkeit entscheidet, ob dein Headless CMS ein MVP-Spielzeug bleibt
oder auch bei 100.000 API-Requests pro Stunde nicht einknickt. SaaS-Anbieter
wie Contentful, Sanity oder Storyblok bieten hier Qut-of-the-Box-Skalierung —
aber zu einem Preis, der bei Enterprise-Projekten schnell vierstellig pro
Monat wird. Open-Source-Systeme wie Strapi, Payload oder Directus skalieren
nur so gut wie dein Hosting-Stack. Wer billig hostet, zahlt mit Downtime und
Performance-Problemen.

Hosting ist ein oft unterschatzter Faktor. On-Premise gibt dir volle
Kontrolle, erfordert aber Know-how in Monitoring, Backups, Updates und
Security. SaaS entlastet dich, sperrt dich aber in die Infrastruktur und die
Preisgestaltung des Anbieters. Hybrid-Modelle sind selten und meist technisch
komplex. Im Headless CMS Vergleich solltest du ehrlich auf die Ressourcen im
eigenen Team schauen — und nicht irgendein System wahlen, weil es “cool”
klingt.

Open Source klingt verlockend, ist aber kein Allheilmittel. Ja, du bist
unabhangig vom Vendor, kannst alles anpassen — aber du bist auch fir alles
selbst verantwortlich. SaaS ist bequem, aber du bist abhangig von Roadmap,
Preisgestaltung, Ausfallen und Feature-Gaps. Die beste LOosung gibt es nicht —
nur die, die am wenigsten nervt und am besten zu deinem Usecase passt.

Wann ein Headless CMS die



richtige Wahl ist — und wann
nicht

Die Headless-Glorifizierung hat einen Haken: Nicht jedes Projekt braucht ein
Headless CMS. Fur eine einfache Firmenwebsite mit zwei Landingpages, ein paar
News und einem Kontaktformular ist Headless overkill — und teuer. Die
Komplexitat im Setup, die Notwendigkeit eines eigenen Frontends, die API-
Integration und das Rechte-Management werden hier schnell zur Belastung.

Headless CMS spielen ihre Starken aus, wenn du Multichannel-Content
ausspielen willst: Website, App, Smart TV, Voice, IoT — alles aus einer
zentralen Quelle, sauber strukturiert und leicht integrierbar. Auch bei
internationalen Rollouts, komplexen Produktkatalogen, E-Commerce-Plattformen
und High-Performance-Sites (z.B. JAMstack mit statischem Frontend) ist
Headless oft unschlagbar.

Entscheidend ist der Projektkontext. Wer kein erfahrenes Entwicklerteam hat,
fuar den ist Headless ein Risiko. Wer auf schnelle Redaktionsprozesse, Live-
Previews, Workflow-Management und geringe Komplexitat angewiesen ist, fahrt
mit einem klassischen oder decoupled CMS oft besser. Im Headless CMS
Vergleich muss also erst die Usecase-Analyse stehen — alles andere ist reiner
Selbstbetrug.

e Du brauchst Multichannel-Ausspielung? Headless ist Pflicht.

e Du willst maximale Freiheit bei Frontend und Tech-Stack? Headless.

e Du hast ein kleines Team ohne Entwickler? Finger weg von Headless.

e Du willst schnelle Content-Workflows und Preview? Klassisches oder
decoupled CMS.

Der Headless CMS Vergleich zeigt: Es gibt keine “beste” Losung. Es gibt nur
die, die zu deinen Anforderungen, deinem Team und deinem Budget passt. Wer
das ignoriert, landet schnell bei einer Architektur, die mehr Probleme
schafft als 16st — und am Ende weder Head noch Tail hat.

Fazit: Der ehrliche Headless
CMS Vergleich — und wie du die
richtige Wahl triffst

Headless CMS sind kein Wundermittel, sondern ein Werkzeug. Sie sind die
richtige Wahl, wenn du die Komplexitat im Griff hast, ein erfahrenes
Entwicklerteam an Bord ist und die Anforderungen wirklich nach Multichannel,
Integrationsfahigkeit und Flexibilitat schreien. Sie sind die falsche Wahl,
wenn du schnelle Resultate, einfache Redaktion und geringe Kosten willst. Die
Systeme unterscheiden sich massiv — im API-Design, in der Erweiterbarkeit, im
Hosting, in der Security und im Preis. Wer sich vom Marketing blenden la&sst,



zahlt mit Frust und technischem Chaos.

Der Headless CMS Vergleich ist eine Frage der Ehrlichkeit: Was brauchst du
wirklich, was kann dein Team leisten, wie viel Kontrolle willst du, und wie
viel Abhangigkeit bist du bereit zu akzeptieren? Es gibt kein perfektes
System. Es gibt nur Systeme, die zu deinen Anforderungen passen — und solche,
die dich in die Sackgasse fuhren. Wer mit klarem Kopf, technischer Tiefe und
kritischer Analyse wahlt, holt aus Headless das Beste raus. Wer nur auf Hype
und Buzzwords setzt, zahlt drauf. Willkommen in der Realitat — willkommen bei

404.



