Welche KI gibt es online
Uberblick fir Profis

Category: KI & Automatisierung
geschrieben von Tobias Hager | 29. Dezember 2025

4 0 &
| (il = |

NERPPIOMA SOURRITY—

Welche KI gibt es online
2025: Der brutale Profi-
Uberblick ohne Buzzword-
Bullshit

Du willst wissen, welche KI es online gibt, ohne dich durch Marketing-Nebel
und Influencer-Romantik zu kampfen? Gut. Hier kommt der ungeschénte,
technische, produktionsreife Uberblick iiber Modelle, APIs, Preise, Latenzen,
Compliance, Orchestrierung und Evaluierung. Keine Hypes, nur belastbare
Fakten und klare Handlungsempfehlungen. Wenn du nach “Welche KI gibt es
online” suchst, bekommst du hier die Antwort — nicht die weichgespilte
Version, sondern die, mit der Profis ihren Stack bauen und skalieren.

e Kompletter Marktuberblick: Welche KI gibt es online — von LLMs uber

https://404.marketing/welche-ki-gibt-es-online/
https://404.marketing/welche-ki-gibt-es-online/

Bild- und Audio-Generatoren bis zu Agent-Systemen und Retrieval-Stacks

e Technische Kennzahlen, die zahlen: Kontextfenster, Tokenpreise,
Durchsatz, Latenz, Rate Limits, KV-Cache, Quantisierung und GPU-
Anforderungen

e Top-Provider realistisch verglichen: OpenAI, Anthropic, Google, Mistral,
Meta, Cohere, Stability, Midjourney, ElevenLabs, OpenRouter und Co.

e Wie du den richtigen Dienst auswahlst: Modelleigenschaften,
Sicherheitsanforderungen, Datenresidenz, Compliance und Kostenkontrolle

e Praxis-Patterns fur Profis: RAG, Function Calling, Tool-Use,
Orchestrierung mit LangChain, LlamaIndex, Haystack und Worker-Queues

e Echte Produktionsreife: Observability, Offline-Evaluation, Human-in-the-
Loop, Guardrails, Promptleaks und Jailbreak-Resilienz

e Welche KI gibt es online aktuell fur Bilder, Audio, Video — und welche
Workloads lokal oder on-prem sinnvoller sind

e Benchmarks ohne Buzzwords: HELM, MMLU, HumanEval, MT-Bench, V-Bench und
warum dein Use Case wichtiger ist als jeder Score

e Schritt-fur-Schritt-Checklisten fur Auswahl, Integration und Monitoring,
damit “Welche KI gibt es online” nicht zur Zeitverschwendung wird

e Skalierung ohne Bauchschmerzen: Multi-Provider-Fallback, Caching-
Strategien, Kostenbudgets, QoS-Policies und SLA-Realitat

Die Frage “Welche KI gibt es online” klingt harmlos, ist aber in der Praxis
ein Minenfeld aus Featuritis, Preismodellen und halbgaren Versprechen. Welche
KI gibt es online, die nicht nur Demos futtert, sondern produktiv 24/7
liefert? Welche KI gibt es online, die mit deinem Datenschutz, deiner Latenz,
deinen Qualitatsmetriken und deinen Agent-Workflows klarkommt? Welche KI gibt
es online, die du orchestrieren kannst, ohne jede Woche das halbe Prompting
zu revidieren? Und welche KI gibt es online, die du morgen austauschen
kannst, wenn der Anbieter plotzlich Preise verdoppelt oder die API bricht?
Genau darum geht es hier — praxisnah, systematisch, gnadenlos konkret.

Bevor wir in Modelle und Provider einsteigen, klaren wir die professionelle
Linse, durch die du “Welche KI gibt es online” betrachten musst. Erstens: Es
geht nicht um Inspiration, es geht um deterministische Outputs unter realer
Last. Zweitens: Jede Entscheidung ist ein Trade-off zwischen Qualitat,
Kosten, Latenz und Kontrolle. Drittens: Die Architektur gewinnt, nicht das
einzelne Modell — Multi-Provider, Feature-Flags, Offline-Evals und Logging
sind Pflicht. Viertens: Sicherheit ist keine nachtragliche Dichtung, sondern
integraler Teil des Designs. Finftens: Roadmaps andern sich, Vertrage
bleiben; plane fir Austauschbarkeit. So denken Profis, wenn sie sich die
Frage “Welche KI gibt es online” stellen und am Ende mit einem Stack
dastehen, der Monate statt Tage Uberlebt.

Wir teilen die Landschaft entlang der Workloads auf: Text-LLMs fir
Generation, Analyse und Tool-Use; Multimodale Modelle fur Vision, OCR und
Audio; Generative Medien fur Bilder, Audio und Video; Agent-Systeme fur
mehrschrittige Aufgaben; Retrieval-Komponenten fir Faktenstabilitat; und
Governance-Schichten fir Sicherheit und Compliance. Fur jeden Block prufen
wir API-Design, Kontextfenster, Tokenisierung, Sampling-Parameter,
Throughput, Preisgestaltung und Betriebsrisiken. So wird aus “Welche KI gibt
es online” kein Bastelprojekt, sondern ein messbarer, revisionssicherer
Produktionsdienst. Das klingt trocken, ist aber genau der Unterschied

zwischen Showcase und Umsatz.

Welche KI gibt es online:
Kategorien, Use-Cases und Pro-
Terminologie

Online-KI gliedert sich fir Profis zunachst in klare Kategorien, weil Use-
Cases sonst diffus bleiben. Erstens gibt es Large Language Models fur
Textverstandnis, Textgenerierung, Tool-Use und Steuerlogik, die als
generelles Steuerhirn dienen. Zweitens existieren multimodale Modelle, die
Text, Bild, Audio und in Teilen Video simultan verarbeiten und Antworten uber
Modalitaten hinweg integrieren. Drittens stehen spezialisierte Generatoren
fur Medien bereit, etwa Diffusionsmodelle fur Bilder, Vocoder und TTS-
Pipelines fur Sprache sowie Motion-Modelle fur Video. Viertens sind Agent-
Frameworks zu nennen, die planen, entscheiden und externe Tools
orchestrieren, um Aufgabenketten robust abzuarbeiten. Funftens gehdren
Retrieval- und Wissensschichten dazu, insbesondere Vektordatenbanken und
Indizes, damit Modelle faktenfest bleiben. Sechstens runden Sicherheits- und
Governance-Layer das Ganze ab, damit nichts brennt, wenn reale Daten und
Prozesse drankommen.

Damit die Diskussion nicht in Buzzwords untergeht, brauchen wir prazise
Begriffe mit technischer Bedeutung. Kontextfenster bezeichnet die maximale
Anzahl von Tokens, die das Modell gleichzeitig verarbeiten kann, und es
bestimmt, wie viel Prompt, Historie oder Dokumenteninhalt du einspeisen
kannst. Tokenisierung ist der Prozess, Eingabetext in Subworteinheiten zu
zerlegen, typischerweise per Byte-Pair Encoding, und beeinflusst Kosten,
Latenz und Genauigkeit. KV-Cache meint das Zwischenspeichern der Key/Value-
Matrizen von Transformerschichten, um bei langen Konversationen oder
Streaming die Generationszeit pro Token zu reduzieren. Funktionales Tool-Use
oder Function Calling beschreibt die Fahigkeit, strukturierte
Funktionsaufrufe auszugeben, die dann von deiner Anwendung mit echten Tools
ausgefuhrt werden. Und RAG, also Retrieval-Augmented Generation, bezeichnet
das Nachladen passender Wissensschnipsel aus Indizes, um Halluzinationen zu
reduzieren und aktuelle Fakten einzuspeisen.

Use-Cases lassen sich entlang von Komplexitat und Risiko priorisieren, was
harte Anforderungen an die Provider stellt. Klassische Content-Augmentation,
etwa Zusammenfassen, Umschreiben und Ubersetzen, ist latenzsensibel, aber
relativ fehlertolerant und gut mit Standard-LLMs abbildbar. Code-Assistenz,
SQL-Generierung und Datenanalysen verlangen hingegen prazise Steuerung,
deterministischere Decoding-Parameter und strenge Tests, insbesondere mit
HumanEval-ahnlichen Benchmarks. Wissensarbeit mit Compliance-Bezug, also
Rechts-, Finanz- oder Medizintexte, bendtigt RAG, Audit-Logs, Guardrails und
Datenflisse, die DSGVO-konform sind. Agentische Automatisierung wie E-Mail-
Triage, Ticket-Bearbeitung oder Onboarding erfordert robuste Tool-Use-Ketten,
Re-tries und Observability, damit Fehlentscheidungen schnell abgefangen

werden. Und dberall gilt: Ohne Telemetrie, Kostenkontrolle und Rollback-
Kapazitat spielt man Feature-Roulette statt Produktentwicklung.

LLMs, Multimodalitat und Text-
APIs: Modelle, Kontext, Kosten
und Latenzen

Die groBen Namen im LLM-SaaS-Bereich sind etabliert, aber ihre Starken
unterscheiden sich im Detail. OpenAI bietet mit GPT-4-Varianten und
multimodalen Ablegern starke Reasoning-Fahigkeiten, breite Tooling-
Unterstutzung und flachendeckende SDKs, jedoch mit proprietarer Abschottung.
Anthropic setzt mit der Claude-3-Familie auf ausgedehnte Kontextfenster,
vorsichtige Sicherheitsmechanismen und starke Instruktionsbefolgung, was in
regulierten Umgebungen oft punktet. Google liefert mit Gemini-Modellen tiefe
Multimodalitdt und solide Integration in Cloud-Okosysteme, was fir Teams mit
GCP-Stack attraktiv ist. Mistral und Cohere fokussieren auf effiziente APIs,
europaische Datenhaltung oder Enterprise-Kontrollen, was in Compliance-
getriebenen Umfeldern entscheidend sein kann. Meta Llama-Modelle sind offen
lizenziert und via Hoster oder Self-Hosting nutzbar, wodurch Kontrolle und
Kostenersparnis bei stabilen Workloads moglich werden.

Technisch entscheidet oft nicht der Markenname, sondern Metriken, die selten
im Marketing stehen. Kontextlange beeinflusst Prompt-Design und RAG-
Strategien, denn jenseits einiger hundert K Tokens nehmen Qualitat und Kosten
nichtlinear zu. Sampling-Parameter wie Temperatur, Top-p, Top-k und
Repetition Penalty steuern Kreativitat und Determinismus und gehdren
versioniert in dein Prompt-Repo. Kosten werden pro 1.000 Tokens abgerechnet,
getrennt fur Eingabe und Ausgabe, und Streaming kann Latenz fiur die UI
deutlich senken. Rate Limits und Durchsatz pro Minute limitieren Skalierung,
weshalb Batch- und Prefill-Strategien mit KV-Cache in hochfrequenten
Pipelines wertvoll sind. Fur sensible Workloads sind Datenretention-Policies,
Log-Opt-Outs und On-Request-Deletion essenziell, andernfalls riskierst du
Trainingsleaks oder Audit-Probleme. Und ganz banal: SLA, Statusseiten-
Historie und Incident-Reaktionszeit schlagen jedes Whitepaper.

Auch Multimodalitat ist kein Selbstzweck, sondern ein Architekturthema mit
Kosten- und Qualitatsfolgen. Vision-Inputs bendétigen verninftige
Aufbereitung, etwa OCR-Vorverarbeitung, Caching von Embeddings und sinnvolles
Chunking fir Dokumente mit Tabellen. Audio-Eingaben per Speech-to-Text
profitieren von Domain-Adaptionen, Vocab-Hints und robustem Postprocessing,
weil Nummern, Namen und Codes sonst entgleisen. Tool-Use in multimodalen
Modellen ist machtig, setzt aber strenge JSON-Schemata, Retry-Logik und
idempotente Tools voraus. Fur viele Anwendungen ist die Kombination aus
schlankem Text-LLM und spezialisierter Vision- oder STT-Komponente glnstiger
und genauer als ein “Alleskénner”. Und wenn dein Workload konstant und
wiederholbar ist, lohnt sich Feintuning oder Adapter-Layer wie LoRA auf
offenen Modellen, um Kosten und Latenz dauerhaft zu dricken.

Welche KI gibt es online fur
Bilder, Audio und Video:
Diffusion, Vocos, TTS und
Motion

Im Bildbereich dominieren Diffusionsmodelle und Transformer-Hybride, die sich
in Qualitat, Prompt-Treue und Lizenzlage unterscheiden. Anbieter wie
Midjourney bieten starke Asthetik und Konsistenz, aber eingeschrankte
Steuerung und Enterprise-Transparenz. Stability AI liefert mit Stable
Diffusion und Varianten eine umfangreiche Open-Source-Okologie, die sich (iber
Hoster bequem betreiben und anpassen lasst. Adobe und Co. punkten mit
Lizenzsicherheit und Integrationen in Kreativ-Workflows, was in
Markenumfeldern oft den Ausschlag gibt. Technisch wichtig sind Prompt-
Kontrolle, Sampler-Parameter, Guidance-Scale, Aufldésung, ControlNet-Module
far Layouts und Inpainting/Outpainting fur iterative Kreativarbeit. Fur
Produktionspipelines spielen aullerdem Inferenzzeit, Batch-Generierung und
Kosten pro Ergebnis eine groBere Rolle als schicke Showcase-Bilder.

Im Audiobereich unterscheiden wir STT, TTS und Voice-Cloning, die jeweils
eigene Tucken haben. Fir Speech-to-Text zahlen Wortfehlerrate, Latenz,
Sprechertrennung, Sprachenabdeckung und Domanenvokabular, weshalb Vocab-Hints
und Post-Korrektur mit regularen Ausdricken oder LLM-Checks Gold wert sind.
Text-to-Speech erfordert naturliche Prosodie, korrekte Betonung und Latency
unter UI-Schmerzgrenzen, vor allem bei Dialogsystemen. Voice-Cloning ist
rechtlich heikel und muss rechtssicheres Consent-Management, Wasserzeichen
oder Stimmverschleierung beinhalten. Anbieter wie Deepgram, Whisper-basierte
Services, AssemblyAI, ElevenLabs und AWS/Google/Microsoft-Stacks decken
unterschiedliche Preis-Leistungs-Sweet-Spots ab. Und wie immer gilt:
Inferenzkosten, Rate Limits und Ausfallstrategien entscheiden daruber, ob
dein Bot um 9 Uhr morgens produktiv ist oder stottert.

Videogenerierung ist die neue glanzende Kugel, aber mit realen
Produktionsgrenzen. Modelle fur Text-zu-Video liefern beeindruckende Clips,
kampfen jedoch mit Konsistenz, Physik und feinen Details Uber mehrere
Sekunden. Fir Marketing reicht das oft, fir Produktdemos oder Education
braucht es Struktur, Storyboards und Postproduktion. Realistische Workflows
splitten in statische Assets, animierte Sequenzen, TTS und Schnitt, statt
alles in ein Wunderprompt zu pressen. Video-Latenz ist ungleich hoher,
weshalb Queues, Vorproduktion und Caching obligatorisch sind. Und wenn
Rechte, Musik und Markenrichtlinien im Spiel sind, sind Audit-Trails und
Render-DNA wichtiger als der Wow-Effekt im ersten Frame.

Agents, Tool-Use und
Orchestrierung: RAG, Function
Calling, LangChain und Co.

Agentische Systeme sind kein magisches Bewusstsein, sondern deterministische
Steuerlogik mit stochastischem Kern. Der Agent plant, ruft Tools lber
definierte Schemata auf, validiert Ergebnisse und entscheidet, was als
nachstes passiert. Function Calling mit strengen JSON-Schemas, robuste
Parser, Zeitouts, Circuit Breaker und idempotente Tools sind die
Lebensversicherung gegen Kettenchaos. RAG senkt Halluzinationen, funktioniert
aber nur mit sauberem Index, sinnvollem Chunking, passenden Embeddings und
Relevanz-Scoring, das dein Domanenwissen abbildet. Multi-Step-Reasonsing
braucht Checkpoints, Re-tries und fehlerbewusste Policies, etwa Self-
Consistency oder Toolformer-ahnliche Muster. Ohne Observability siehst du nur
Prompts und Hoffnungen — mit strukturierter Telemetrie erkennst du Dead-Ends,
Kostentreiber und verbesserst systematisch.

Orchestrierungsframeworks beschleunigen, aber verschleiern gern technische
Schulden. LangChain bietet Bausteine fur Chains, Agents, Memory und Tools,
doch ohne Disziplin entsteht schnell Komplexitat mit magischen Side Effects.
LlamaIndex fokussiert Retrieval-Qualitat, Indizes, Reranker und Evaluierung
fir dokumentengestiitzte Systeme. Haystack ist in vielen Enterprise-Stacks
erprobt und spielt besonders gut mit Open-Source-Komponenten. Fir schwere
Lasten solltest du Worker-Queues, Feature-Flags, A/B-Routing, Canary-
Deployments und Circuit Breaker aullerhalb der LLM-Library betreiben. Und ja,
eine simple, eigene Orchestrierung Uber klaren Code, Message-Bus und
Telemetrie ist oft wartbarer als zehn Schichten Metaframework.

Tool-Use reift erst mit starker Typisierung, Fehlerklassen und
Eingabevalidierung. JSON-Schemata brauchen Versionierung, Defaultwerte, Enums
und Grenzen, damit der Agent nicht in Unfug rennt. Antworten aus Tools miussen
validiert, harmonisiert und bei Bedarf durch ein Validierungslayer mit
Grammar-Constrained Decoding oder Structured Outputs geschleust werden. Fur
RAG sind Evaluation und Offline-Experimente Pflicht: NDCG, MRR, Recallgk,
Passage-Anteil im finalen OQutput und Query-Klassifizierung zahlen. Hybrid-
Retrieval mit dichten und sparlichen Indizes, Reranking mit Cross-Encodern
und Query-Rewriting sind keine Kur, sondern Standard. Und wenn du wirklich
automatisierst, brauchst du Rollen, Berechtigungen, Audit-Logs und ein
Revisionskonzept, sonst baut dein Agent dir in funf Minuten 500 falsche
Rechnungen.

e Tool-Use stabilisieren: JSON-Schema definieren, Parser erzwingen,
Fehlerklassen abbilden, idempotente Funktionen bauen, Timeouts setzen,
Retries begrenzen.

e RAG hartmachen: Quellen normalisieren, sinnvolles Chunking, Embeddings
testen, Retrieval evaluieren, Reranking aktivieren, Output mit
Zitatstellen versehen.

e Orchestrierung produktiv machen: Message-Queues, Circuit Breaker,
zentralisierte Logs, Kostenmetering, Feature-Flags, Canary-Routing,
Fallback-Provider.

e Beobachtbarkeit sichern: Prompt- und Tool-Traces, Token-Statistiken,
Qualitatsmetriken, Fehlertaxonomie, Dashboards und Alerting.

Compliance, Sicherheit und
Governance: EU AI Act, DSGVO,
PII und Promptleaks

Ohne Governance ist jede Online-KI eine Haftungsfalle mit freundlicher API.
Der EU AI Act und bestehende Regelwerke verlangen Risikoanalyse,
Dokumentation, Transparenz und in Teilen strenge Qualitats- und
Aufsichtspflichten. DSGVO macht klar: Personenbezogene Daten brauchen
Rechtsgrundlage, Zweckbindung, Minimierung und Ldschkonzepte. Datenresidenz,
Auftragsverarbeitung, Subprozessoren und Transfer in Drittlander sind
Vertrags- und Architekturthemen, nicht FuBBnoten. BYOK und eigene KMS-
Schlissel sind bei sensiblen Daten Standard, ebenso Verschlusselung at-rest
und in-transit. Und Promptleaks sind real: Ohne Sanitization, PII-Filter,
Secret-Scanning und Kontext-Reduktion landen vertrauliche Informationen
schneller im Modellkontext als dir lieb ist.

Security beginnt vor dem Prompt und endet nicht mit einem hibschen Output.
Eingaben brauchen Validierung und Red Teaming gegen Prompt Injection,
Jailbreaks und Indirekte Injection via Dokumente oder Links. OQutput muss auf
Policy-VerstoBe geprift werden, idealerweise mit separaten Klassifizierern,
Regeln oder Sicherheits-Layer wie Guardrails. Tool-Use verlangt strikte
Sandboxing-Strategien, begrenzte Berechtigungen, Least Privilege und
Monitoring jeder Aktion. Fur Audits bendtigst du vollstandige Traces, die
Promptversion, Parameter, Modellversion, verwendete Tools, Datenquellen und
Nutzerkontext enthalten. Und du brauchst Prozesse: Rollende Reviews, Change
Logs, Notfallplan, Verantwortlichkeiten und Schulungen, sonst bringt die
beste Technik nichts.

Provider-seitig sind Datenschutz-Features nicht verhandelbar, wenn es ernst
wird. Keine Trainingsnutzung deiner Daten, klare Retentionszeiten, Logging-
Opt-Out und regelmalige Pen-Tests sind Mindeststandard. Private Endpunkte,
regionale Rechenzentren, vertragliche SLAs und Support-Reaktionszeiten
gehdren in den Vertrag, nicht ins Wunschdenken. Fir besonders sensible
Workloads ist Self-Hosting oder VPC-Hosting mit offenen Modellen eine valide
Option, gepaart mit MLOps-Standards, Secrets-Management und Observability-
Stacks. Und last but not least: Dokumentation ist Compliance, schreibe auf,
was dein System tut, warum es das tut, mit welchen Risiken — und wie du sie
kontrollierst.

e Eingaben harten: PII-Maskierung, Secret-Scanner, Content-Filter,
Kontextbegrenzung, Link-Sandboxing, Indirekte-Injection-Checks.
e Abldufe regeln: Verantwortliche benennen, Anderungsprozesse definieren,

Red-Teaming planen, Vorfalle dokumentieren, NotfallmaBnahmen testen.
e Vertrage klaren: AVV, Subprozessorenliste, Datenresidenz, SLA, Support,
Audit-Rechte, Exit-Strategie und Datenldschung.

Evaluation, Benchmarks und
Monitoring: Qualitat messen
statt hoffen

Benchmarks sind hilfreich, aber dein Use Case schlagt jeden Score.
Offentliche Tabellen wie MMLU, Big-Bench, HumanEval, GSM8K, MBPP oder MT-
Bench geben eine Tendenz, erklaren aber nicht, ob dein Spezialjargon korrekt
verstanden wird. Baue deshalb einen domanenspezifischen Evalsuite mit realen
Prompts, Gold-Labels und klaren Metriken, die Geschaftsziele abbilden. Fir
Generationen nutzt du automatische Metriken wie BLEU, ROUGE, BERTScore und
Semantik-Ahnlichkeit, erganzt durch menschliche Bewertungen. Fir RAG misst du
Retrieval-Qualitat mit Recall@k, NDCG, MRR, Passage-Abdeckung und
Zitiergenauigkeit. Fur Tool-Use brauchst du Erfolgsquote pro Schritt,
Fehlerklassen, End-to-End-Completion-Rate und Median-Latenz unter Last.

Monitoring ist mehr als “hat geantwortet”. Du brauchst Telemetrie pro
Anfrage: Modell, Version, Parameter, Tokenkosten, Latenz, Fehlertyp,
Toolpfad, Quellen, Nutzerkontext. Caching-Raten, Fallback-Haufigkeiten und
Abbruchgrinde zeigen dir, wo Geld verbrannt wird. Fir Kostenkontrolle setzt
du Budgets, Quoten und Kosten-Alerts pro Team, Projekt und Feature-Flag.
Live-Quality kann mit LLM-as-a-Judge, Heuristiken und stichprobenbasierter
Human-in-the-Loop-Priufung begleitet werden. Drift-Erkennung warnt dich, wenn
Antworten abgleiten, etwa nach Provider-Updates oder Datenanderungen. Ohne
diese Infrastruktur ist jede Optimierung ein Glicksspiel und jeder Ausfall
ein Drama.

Offline-Experimente verhindern, dass dein Produktivsystem zum Labor wird. Du
versionierst Prompts, Chain-Logiken, RAG-Parameter und Tool-Schemata und
testest Varianten systematisch gegen deine Eval-Sets. Eine saubere CI-
Pipeline fuhrt Evals automatisch aus und blockiert Rollouts bei
Qualitatsruckfall. Canary-Deployments und A/B-Tests validieren Effekte in der
Realitat, bevor die gesamte Nutzerschaft betroffen ist. In Verbindung mit
Feature-Flags kannst du riskante Anderungen gezielt und reversibel ausrollen.
So verwandelst du LLM-Entwicklung von Alchemie in Ingenieurwesen.

e Evals aufsetzen: Use-Case definieren, Gold-Daten kuratieren, Metriken
wahlen, Benchmarks implementieren, CI integrieren, Review-Prozess
etablieren.

e Monitoring bauen: Tracing, Metriken, Logs, Dashboards, Alerts,
Kostenlimits, Rate-Limits, Fallback-Regeln, Incident-Playbooks.

e Kontinuierlich verbessern: Drift erkennen, Ursachen analysieren,
Hypothesen testen, Small-Batch-Rollouts, Regressions verhindern.

Auswahl-Framework: So findest
du die richtige Online-KI fur
dein Team

Wahle nie ein Modell, wahle eine Architektur mit Exit-Strategie. Beginne mit
der Problemdefinition, nicht mit dem Logo, und lUbersetze Anforderungen in
messbare Metriken fir Qualitat, Latenz, Kosten und Sicherheit. Erstelle eine
Shortlist aus 3-5 Providern, die deine Mindestanforderungen abdecken, etwa
Kontextlange, Tool-Use, Datenresidenz und Preisbereich. Teste alle Kandidaten
auf deiner Eval-Suite, nicht auf Demo-Prompts, und vergleiche robuste
Kennzahlen unter identischen Parametern. Plane Fallbacks und Multi-Provider-
Routing von Anfang an, damit du bei Incidents, Preisspringen oder
Qualitatsdrift handlungsfahig bleibst. Und schreibe Policies, wie neue
Modelle oder Versionen in deine Landschaft kommen, sonst wird dein Stack zum
Z00.

Kostenbetrachtung ist mehrstufig und beginnt auf Token-Ebene, endet aber in
Architekturkosten. Rechne Input- und Output-Token mit realistischen
PromptgréBen, Antworthdhen und Retries, nicht mit Schoénwetterzahlen.
Bericksichtige Latenz- und Durchsatzbedarfe, denn Skalierung kostet mehr als
nur Tokenpreise; Queueing, Parallelisierung und Caching machen den
Unterschied. Prife Rate Limits, Priorisierungsmodelle und Reservierungen beim
Provider, damit Peak-Lasten nicht zur Lotterie werden. Denke auch an
Personalkosten: Eine API mit reifem SDK, klarer Doku und stabilen Semantiken
spart Monate gegenliber hippen, brichigen Loésungen. Und dokumentiere deine
Annahmen; Budgetkontrolle ohne Annahmen ist eine Fiktion.

Technischer Zuschnitt entscheidet, ob du morgen noch ruhig schlafst. Prife,
ob Structured Outputs stabil sind, ob Function Calling Schema-Treue halt und
ob Validierungsfehler sauber behandelbar sind. Schau dir Observability-
Features an: Request-IDs, korrelierbare Logs, Statusseitenhistorie,
dedizierte Supportkanale. Verifiziere Sicherheitsmechanismen, Datenflusse,
Retention-Optionen, BYOK, regionale Endpunkte und Vertragsklarheit. Und
verhandle Off-Ramps: Datenexport, Migrationshilfen, Preisanpassungsklauseln,
Notfallkontakte. Gute Anbieter scheuen das nicht; schlechte schon.

1. Use-Case klaren: Ziel, Risiken, Metriken, Constraints definieren und
schriftlich fixieren.

2. Shortlist bilden: Funktionale Mindestkriterien, Compliance, Preisrahmen,
regionale Anforderungen.

3. Eval-Suite ausrollen: Einheitliche Prompts, Parameter, Messung,
Regressionstests.

4. Architektur planen: Multi-Provider, Fallbacks, Caching, Observability,
Kosten-Policies.

5. Vertrage schlielBen: AVV, SLAs, Datenresidenz, Support, Exit-Strategie,
Eskalationspfade.

6. Rollout steuern: Feature-Flags, Canary, Monitoring, Incident-Playbooks,

Postmortems.

Zum Schluss: Welche KI gibt es online ist eine falsche Einzahlfrage in einem
Mehrzahlmarkt. Du brauchst bewusst mehrere Bausteine, die du austauschen
kannst, wenn Anforderungen, Preise oder Qualitat sich verschieben. Ein
starker Stack ist modular, beobachtbar, evaluiert und durch Policies
geschutzt. So baust du keine Abhangigkeit, sondern einen Wettbewerbsvorteil.
Und du ersparst dir den peinlichen Satz “wir warten gerade auf die Antwort
vom Modell”, wenn die Produktion brennt.

Wenn du bis hierher gelesen hast, hast du verstanden, dass “Welche KI gibt es
online” nur der Anfang ist. Die eigentliche Kunst ist, aus den Bausteinen
einen verlasslichen, sicheren und bezahlbaren Produktionsdienst zu bauen.
Konzentriere dich auf Messbarkeit statt Magie, auf Architektur statt
Anekdoten, auf Prozesse statt Bauchgefihl. Dann lieferst du Ergebnisse, nicht
nur Demos. Willkommen in der Realitat der Profis. Willkommen bei 404.

