
Welche KI gibt es online
– Überblick für Profis
Category: KI & Automatisierung
geschrieben von Tobias Hager | 29. Dezember 2025

Welche KI gibt es online
2025: Der brutale Profi-
Überblick ohne Buzzword-
Bullshit
Du willst wissen, welche KI es online gibt, ohne dich durch Marketing-Nebel
und Influencer-Romantik zu kämpfen? Gut. Hier kommt der ungeschönte,
technische, produktionsreife Überblick über Modelle, APIs, Preise, Latenzen,
Compliance, Orchestrierung und Evaluierung. Keine Hypes, nur belastbare
Fakten und klare Handlungsempfehlungen. Wenn du nach “Welche KI gibt es
online” suchst, bekommst du hier die Antwort – nicht die weichgespülte
Version, sondern die, mit der Profis ihren Stack bauen und skalieren.

Kompletter Marktüberblick: Welche KI gibt es online – von LLMs über

https://404.marketing/welche-ki-gibt-es-online/
https://404.marketing/welche-ki-gibt-es-online/


Bild- und Audio-Generatoren bis zu Agent-Systemen und Retrieval-Stacks
Technische Kennzahlen, die zählen: Kontextfenster, Tokenpreise,
Durchsatz, Latenz, Rate Limits, KV-Cache, Quantisierung und GPU-
Anforderungen
Top-Provider realistisch verglichen: OpenAI, Anthropic, Google, Mistral,
Meta, Cohere, Stability, Midjourney, ElevenLabs, OpenRouter und Co.
Wie du den richtigen Dienst auswählst: Modelleigenschaften,
Sicherheitsanforderungen, Datenresidenz, Compliance und Kostenkontrolle
Praxis-Patterns für Profis: RAG, Function Calling, Tool-Use,
Orchestrierung mit LangChain, LlamaIndex, Haystack und Worker-Queues
Echte Produktionsreife: Observability, Offline-Evaluation, Human-in-the-
Loop, Guardrails, Promptleaks und Jailbreak-Resilienz
Welche KI gibt es online aktuell für Bilder, Audio, Video – und welche
Workloads lokal oder on-prem sinnvoller sind
Benchmarks ohne Buzzwords: HELM, MMLU, HumanEval, MT-Bench, V-Bench und
warum dein Use Case wichtiger ist als jeder Score
Schritt-für-Schritt-Checklisten für Auswahl, Integration und Monitoring,
damit “Welche KI gibt es online” nicht zur Zeitverschwendung wird
Skalierung ohne Bauchschmerzen: Multi-Provider-Fallback, Caching-
Strategien, Kostenbudgets, QoS-Policies und SLA-Realität

Die Frage “Welche KI gibt es online” klingt harmlos, ist aber in der Praxis
ein Minenfeld aus Featuritis, Preismodellen und halbgaren Versprechen. Welche
KI gibt es online, die nicht nur Demos füttert, sondern produktiv 24/7
liefert? Welche KI gibt es online, die mit deinem Datenschutz, deiner Latenz,
deinen Qualitätsmetriken und deinen Agent-Workflows klarkommt? Welche KI gibt
es online, die du orchestrieren kannst, ohne jede Woche das halbe Prompting
zu revidieren? Und welche KI gibt es online, die du morgen austauschen
kannst, wenn der Anbieter plötzlich Preise verdoppelt oder die API bricht?
Genau darum geht es hier – praxisnah, systematisch, gnadenlos konkret.

Bevor wir in Modelle und Provider einsteigen, klären wir die professionelle
Linse, durch die du “Welche KI gibt es online” betrachten musst. Erstens: Es
geht nicht um Inspiration, es geht um deterministische Outputs unter realer
Last. Zweitens: Jede Entscheidung ist ein Trade-off zwischen Qualität,
Kosten, Latenz und Kontrolle. Drittens: Die Architektur gewinnt, nicht das
einzelne Modell – Multi-Provider, Feature-Flags, Offline-Evals und Logging
sind Pflicht. Viertens: Sicherheit ist keine nachträgliche Dichtung, sondern
integraler Teil des Designs. Fünftens: Roadmaps ändern sich, Verträge
bleiben; plane für Austauschbarkeit. So denken Profis, wenn sie sich die
Frage “Welche KI gibt es online” stellen und am Ende mit einem Stack
dastehen, der Monate statt Tage überlebt.

Wir teilen die Landschaft entlang der Workloads auf: Text-LLMs für
Generation, Analyse und Tool-Use; Multimodale Modelle für Vision, OCR und
Audio; Generative Medien für Bilder, Audio und Video; Agent-Systeme für
mehrschrittige Aufgaben; Retrieval-Komponenten für Faktenstabilität; und
Governance-Schichten für Sicherheit und Compliance. Für jeden Block prüfen
wir API-Design, Kontextfenster, Tokenisierung, Sampling-Parameter,
Throughput, Preisgestaltung und Betriebsrisiken. So wird aus “Welche KI gibt
es online” kein Bastelprojekt, sondern ein messbarer, revisionssicherer
Produktionsdienst. Das klingt trocken, ist aber genau der Unterschied



zwischen Showcase und Umsatz.

Welche KI gibt es online:
Kategorien, Use-Cases und Pro-
Terminologie
Online-KI gliedert sich für Profis zunächst in klare Kategorien, weil Use-
Cases sonst diffus bleiben. Erstens gibt es Large Language Models für
Textverständnis, Textgenerierung, Tool-Use und Steuerlogik, die als
generelles Steuerhirn dienen. Zweitens existieren multimodale Modelle, die
Text, Bild, Audio und in Teilen Video simultan verarbeiten und Antworten über
Modalitäten hinweg integrieren. Drittens stehen spezialisierte Generatoren
für Medien bereit, etwa Diffusionsmodelle für Bilder, Vocoder und TTS-
Pipelines für Sprache sowie Motion-Modelle für Video. Viertens sind Agent-
Frameworks zu nennen, die planen, entscheiden und externe Tools
orchestrieren, um Aufgabenketten robust abzuarbeiten. Fünftens gehören
Retrieval- und Wissensschichten dazu, insbesondere Vektordatenbanken und
Indizes, damit Modelle faktenfest bleiben. Sechstens runden Sicherheits- und
Governance-Layer das Ganze ab, damit nichts brennt, wenn reale Daten und
Prozesse drankommen.

Damit die Diskussion nicht in Buzzwords untergeht, brauchen wir präzise
Begriffe mit technischer Bedeutung. Kontextfenster bezeichnet die maximale
Anzahl von Tokens, die das Modell gleichzeitig verarbeiten kann, und es
bestimmt, wie viel Prompt, Historie oder Dokumenteninhalt du einspeisen
kannst. Tokenisierung ist der Prozess, Eingabetext in Subworteinheiten zu
zerlegen, typischerweise per Byte-Pair Encoding, und beeinflusst Kosten,
Latenz und Genauigkeit. KV-Cache meint das Zwischenspeichern der Key/Value-
Matrizen von Transformerschichten, um bei langen Konversationen oder
Streaming die Generationszeit pro Token zu reduzieren. Funktionales Tool-Use
oder Function Calling beschreibt die Fähigkeit, strukturierte
Funktionsaufrufe auszugeben, die dann von deiner Anwendung mit echten Tools
ausgeführt werden. Und RAG, also Retrieval-Augmented Generation, bezeichnet
das Nachladen passender Wissensschnipsel aus Indizes, um Halluzinationen zu
reduzieren und aktuelle Fakten einzuspeisen.

Use-Cases lassen sich entlang von Komplexität und Risiko priorisieren, was
harte Anforderungen an die Provider stellt. Klassische Content-Augmentation,
etwa Zusammenfassen, Umschreiben und Übersetzen, ist latenzsensibel, aber
relativ fehlertolerant und gut mit Standard-LLMs abbildbar. Code-Assistenz,
SQL-Generierung und Datenanalysen verlangen hingegen präzise Steuerung,
deterministischere Decoding-Parameter und strenge Tests, insbesondere mit
HumanEval-ähnlichen Benchmarks. Wissensarbeit mit Compliance-Bezug, also
Rechts-, Finanz- oder Medizintexte, benötigt RAG, Audit-Logs, Guardrails und
Datenflüsse, die DSGVO-konform sind. Agentische Automatisierung wie E-Mail-
Triage, Ticket-Bearbeitung oder Onboarding erfordert robuste Tool-Use-Ketten,
Re-tries und Observability, damit Fehlentscheidungen schnell abgefangen



werden. Und überall gilt: Ohne Telemetrie, Kostenkontrolle und Rollback-
Kapazität spielt man Feature-Roulette statt Produktentwicklung.

LLMs, Multimodalität und Text-
APIs: Modelle, Kontext, Kosten
und Latenzen
Die großen Namen im LLM-SaaS-Bereich sind etabliert, aber ihre Stärken
unterscheiden sich im Detail. OpenAI bietet mit GPT-4-Varianten und
multimodalen Ablegern starke Reasoning-Fähigkeiten, breite Tooling-
Unterstützung und flächendeckende SDKs, jedoch mit proprietärer Abschottung.
Anthropic setzt mit der Claude-3-Familie auf ausgedehnte Kontextfenster,
vorsichtige Sicherheitsmechanismen und starke Instruktionsbefolgung, was in
regulierten Umgebungen oft punktet. Google liefert mit Gemini-Modellen tiefe
Multimodalität und solide Integration in Cloud-Ökosysteme, was für Teams mit
GCP-Stack attraktiv ist. Mistral und Cohere fokussieren auf effiziente APIs,
europäische Datenhaltung oder Enterprise-Kontrollen, was in Compliance-
getriebenen Umfeldern entscheidend sein kann. Meta Llama-Modelle sind offen
lizenziert und via Hoster oder Self-Hosting nutzbar, wodurch Kontrolle und
Kostenersparnis bei stabilen Workloads möglich werden.

Technisch entscheidet oft nicht der Markenname, sondern Metriken, die selten
im Marketing stehen. Kontextlänge beeinflusst Prompt-Design und RAG-
Strategien, denn jenseits einiger hundert K Tokens nehmen Qualität und Kosten
nichtlinear zu. Sampling-Parameter wie Temperatur, Top-p, Top-k und
Repetition Penalty steuern Kreativität und Determinismus und gehören
versioniert in dein Prompt-Repo. Kosten werden pro 1.000 Tokens abgerechnet,
getrennt für Eingabe und Ausgabe, und Streaming kann Latenz für die UI
deutlich senken. Rate Limits und Durchsatz pro Minute limitieren Skalierung,
weshalb Batch- und Prefill-Strategien mit KV-Cache in hochfrequenten
Pipelines wertvoll sind. Für sensible Workloads sind Datenretention-Policies,
Log-Opt-Outs und On-Request-Deletion essenziell, andernfalls riskierst du
Trainingsleaks oder Audit-Probleme. Und ganz banal: SLA, Statusseiten-
Historie und Incident-Reaktionszeit schlagen jedes Whitepaper.

Auch Multimodalität ist kein Selbstzweck, sondern ein Architekturthema mit
Kosten- und Qualitätsfolgen. Vision-Inputs benötigen vernünftige
Aufbereitung, etwa OCR-Vorverarbeitung, Caching von Embeddings und sinnvolles
Chunking für Dokumente mit Tabellen. Audio-Eingaben per Speech-to-Text
profitieren von Domain-Adaptionen, Vocab-Hints und robustem Postprocessing,
weil Nummern, Namen und Codes sonst entgleisen. Tool-Use in multimodalen
Modellen ist mächtig, setzt aber strenge JSON-Schemata, Retry-Logik und
idempotente Tools voraus. Für viele Anwendungen ist die Kombination aus
schlankem Text-LLM und spezialisierter Vision- oder STT-Komponente günstiger
und genauer als ein “Alleskönner”. Und wenn dein Workload konstant und
wiederholbar ist, lohnt sich Feintuning oder Adapter-Layer wie LoRA auf
offenen Modellen, um Kosten und Latenz dauerhaft zu drücken.



Welche KI gibt es online für
Bilder, Audio und Video:
Diffusion, Vocos, TTS und
Motion
Im Bildbereich dominieren Diffusionsmodelle und Transformer-Hybride, die sich
in Qualität, Prompt-Treue und Lizenzlage unterscheiden. Anbieter wie
Midjourney bieten starke Ästhetik und Konsistenz, aber eingeschränkte
Steuerung und Enterprise-Transparenz. Stability AI liefert mit Stable
Diffusion und Varianten eine umfangreiche Open-Source-Ökologie, die sich über
Hoster bequem betreiben und anpassen lässt. Adobe und Co. punkten mit
Lizenzsicherheit und Integrationen in Kreativ-Workflows, was in
Markenumfeldern oft den Ausschlag gibt. Technisch wichtig sind Prompt-
Kontrolle, Sampler-Parameter, Guidance-Scale, Auflösung, ControlNet-Module
für Layouts und Inpainting/Outpainting für iterative Kreativarbeit. Für
Produktionspipelines spielen außerdem Inferenzzeit, Batch-Generierung und
Kosten pro Ergebnis eine größere Rolle als schicke Showcase-Bilder.

Im Audiobereich unterscheiden wir STT, TTS und Voice-Cloning, die jeweils
eigene Tücken haben. Für Speech-to-Text zählen Wortfehlerrate, Latenz,
Sprechertrennung, Sprachenabdeckung und Domänenvokabular, weshalb Vocab-Hints
und Post-Korrektur mit regulären Ausdrücken oder LLM-Checks Gold wert sind.
Text-to-Speech erfordert natürliche Prosodie, korrekte Betonung und Latency
unter UI-Schmerzgrenzen, vor allem bei Dialogsystemen. Voice-Cloning ist
rechtlich heikel und muss rechtssicheres Consent-Management, Wasserzeichen
oder Stimmverschleierung beinhalten. Anbieter wie Deepgram, Whisper-basierte
Services, AssemblyAI, ElevenLabs und AWS/Google/Microsoft-Stacks decken
unterschiedliche Preis-Leistungs-Sweet-Spots ab. Und wie immer gilt:
Inferenzkosten, Rate Limits und Ausfallstrategien entscheiden darüber, ob
dein Bot um 9 Uhr morgens produktiv ist oder stottert.

Videogenerierung ist die neue glänzende Kugel, aber mit realen
Produktionsgrenzen. Modelle für Text-zu-Video liefern beeindruckende Clips,
kämpfen jedoch mit Konsistenz, Physik und feinen Details über mehrere
Sekunden. Für Marketing reicht das oft, für Produktdemos oder Education
braucht es Struktur, Storyboards und Postproduktion. Realistische Workflows
splitten in statische Assets, animierte Sequenzen, TTS und Schnitt, statt
alles in ein Wunderprompt zu pressen. Video-Latenz ist ungleich höher,
weshalb Queues, Vorproduktion und Caching obligatorisch sind. Und wenn
Rechte, Musik und Markenrichtlinien im Spiel sind, sind Audit-Trails und
Render-DNA wichtiger als der Wow-Effekt im ersten Frame.



Agents, Tool-Use und
Orchestrierung: RAG, Function
Calling, LangChain und Co.
Agentische Systeme sind kein magisches Bewusstsein, sondern deterministische
Steuerlogik mit stochastischem Kern. Der Agent plant, ruft Tools über
definierte Schemata auf, validiert Ergebnisse und entscheidet, was als
nächstes passiert. Function Calling mit strengen JSON-Schemas, robuste
Parser, Zeitouts, Circuit Breaker und idempotente Tools sind die
Lebensversicherung gegen Kettenchaos. RAG senkt Halluzinationen, funktioniert
aber nur mit sauberem Index, sinnvollem Chunking, passenden Embeddings und
Relevanz-Scoring, das dein Domänenwissen abbildet. Multi-Step-Reasonsing
braucht Checkpoints, Re-tries und fehlerbewusste Policies, etwa Self-
Consistency oder Toolformer-ähnliche Muster. Ohne Observability siehst du nur
Prompts und Hoffnungen – mit strukturierter Telemetrie erkennst du Dead-Ends,
Kostentreiber und verbesserst systematisch.

Orchestrierungsframeworks beschleunigen, aber verschleiern gern technische
Schulden. LangChain bietet Bausteine für Chains, Agents, Memory und Tools,
doch ohne Disziplin entsteht schnell Komplexität mit magischen Side Effects.
LlamaIndex fokussiert Retrieval-Qualität, Indizes, Reranker und Evaluierung
für dokumentengestützte Systeme. Haystack ist in vielen Enterprise-Stacks
erprobt und spielt besonders gut mit Open-Source-Komponenten. Für schwere
Lasten solltest du Worker-Queues, Feature-Flags, A/B-Routing, Canary-
Deployments und Circuit Breaker außerhalb der LLM-Library betreiben. Und ja,
eine simple, eigene Orchestrierung über klaren Code, Message-Bus und
Telemetrie ist oft wartbarer als zehn Schichten Metaframework.

Tool-Use reift erst mit starker Typisierung, Fehlerklassen und
Eingabevalidierung. JSON-Schemata brauchen Versionierung, Defaultwerte, Enums
und Grenzen, damit der Agent nicht in Unfug rennt. Antworten aus Tools müssen
validiert, harmonisiert und bei Bedarf durch ein Validierungslayer mit
Grammar-Constrained Decoding oder Structured Outputs geschleust werden. Für
RAG sind Evaluation und Offline-Experimente Pflicht: NDCG, MRR, Recall@k,
Passage-Anteil im finalen Output und Query-Klassifizierung zählen. Hybrid-
Retrieval mit dichten und spärlichen Indizes, Reranking mit Cross-Encodern
und Query-Rewriting sind keine Kür, sondern Standard. Und wenn du wirklich
automatisierst, brauchst du Rollen, Berechtigungen, Audit-Logs und ein
Revisionskonzept, sonst baut dein Agent dir in fünf Minuten 500 falsche
Rechnungen.

Tool-Use stabilisieren: JSON-Schema definieren, Parser erzwingen,
Fehlerklassen abbilden, idempotente Funktionen bauen, Timeouts setzen,
Retries begrenzen.
RAG hartmachen: Quellen normalisieren, sinnvolles Chunking, Embeddings
testen, Retrieval evaluieren, Reranking aktivieren, Output mit
Zitatstellen versehen.



Orchestrierung produktiv machen: Message-Queues, Circuit Breaker,
zentralisierte Logs, Kostenmetering, Feature-Flags, Canary-Routing,
Fallback-Provider.
Beobachtbarkeit sichern: Prompt- und Tool-Traces, Token-Statistiken,
Qualitätsmetriken, Fehlertaxonomie, Dashboards und Alerting.

Compliance, Sicherheit und
Governance: EU AI Act, DSGVO,
PII und Promptleaks
Ohne Governance ist jede Online-KI eine Haftungsfalle mit freundlicher API.
Der EU AI Act und bestehende Regelwerke verlangen Risikoanalyse,
Dokumentation, Transparenz und in Teilen strenge Qualitäts- und
Aufsichtspflichten. DSGVO macht klar: Personenbezogene Daten brauchen
Rechtsgrundlage, Zweckbindung, Minimierung und Löschkonzepte. Datenresidenz,
Auftragsverarbeitung, Subprozessoren und Transfer in Drittländer sind
Vertrags- und Architekturthemen, nicht Fußnoten. BYOK und eigene KMS-
Schlüssel sind bei sensiblen Daten Standard, ebenso Verschlüsselung at-rest
und in-transit. Und Promptleaks sind real: Ohne Sanitization, PII-Filter,
Secret-Scanning und Kontext-Reduktion landen vertrauliche Informationen
schneller im Modellkontext als dir lieb ist.

Security beginnt vor dem Prompt und endet nicht mit einem hübschen Output.
Eingaben brauchen Validierung und Red Teaming gegen Prompt Injection,
Jailbreaks und Indirekte Injection via Dokumente oder Links. Output muss auf
Policy-Verstöße geprüft werden, idealerweise mit separaten Klassifizierern,
Regeln oder Sicherheits-Layer wie Guardrails. Tool-Use verlangt strikte
Sandboxing-Strategien, begrenzte Berechtigungen, Least Privilege und
Monitoring jeder Aktion. Für Audits benötigst du vollständige Traces, die
Promptversion, Parameter, Modellversion, verwendete Tools, Datenquellen und
Nutzerkontext enthalten. Und du brauchst Prozesse: Rollende Reviews, Change
Logs, Notfallplan, Verantwortlichkeiten und Schulungen, sonst bringt die
beste Technik nichts.

Provider-seitig sind Datenschutz-Features nicht verhandelbar, wenn es ernst
wird. Keine Trainingsnutzung deiner Daten, klare Retentionszeiten, Logging-
Opt-Out und regelmäßige Pen-Tests sind Mindeststandard. Private Endpunkte,
regionale Rechenzentren, vertragliche SLAs und Support-Reaktionszeiten
gehören in den Vertrag, nicht ins Wunschdenken. Für besonders sensible
Workloads ist Self-Hosting oder VPC-Hosting mit offenen Modellen eine valide
Option, gepaart mit MLOps-Standards, Secrets-Management und Observability-
Stacks. Und last but not least: Dokumentation ist Compliance, schreibe auf,
was dein System tut, warum es das tut, mit welchen Risiken – und wie du sie
kontrollierst.

Eingaben härten: PII-Maskierung, Secret-Scanner, Content-Filter,
Kontextbegrenzung, Link-Sandboxing, Indirekte-Injection-Checks.
Abläufe regeln: Verantwortliche benennen, Änderungsprozesse definieren,



Red-Teaming planen, Vorfälle dokumentieren, Notfallmaßnahmen testen.
Verträge klären: AVV, Subprozessorenliste, Datenresidenz, SLA, Support,
Audit-Rechte, Exit-Strategie und Datenlöschung.

Evaluation, Benchmarks und
Monitoring: Qualität messen
statt hoffen
Benchmarks sind hilfreich, aber dein Use Case schlägt jeden Score.
Öffentliche Tabellen wie MMLU, Big-Bench, HumanEval, GSM8K, MBPP oder MT-
Bench geben eine Tendenz, erklären aber nicht, ob dein Spezialjargon korrekt
verstanden wird. Baue deshalb einen domänenspezifischen Evalsuite mit realen
Prompts, Gold-Labels und klaren Metriken, die Geschäftsziele abbilden. Für
Generationen nutzt du automatische Metriken wie BLEU, ROUGE, BERTScore und
Semantik-Ähnlichkeit, ergänzt durch menschliche Bewertungen. Für RAG misst du
Retrieval-Qualität mit Recall@k, NDCG, MRR, Passage-Abdeckung und
Zitiergenauigkeit. Für Tool-Use brauchst du Erfolgsquote pro Schritt,
Fehlerklassen, End-to-End-Completion-Rate und Median-Latenz unter Last.

Monitoring ist mehr als “hat geantwortet”. Du brauchst Telemetrie pro
Anfrage: Modell, Version, Parameter, Tokenkosten, Latenz, Fehlertyp,
Toolpfad, Quellen, Nutzerkontext. Caching-Raten, Fallback-Häufigkeiten und
Abbruchgründe zeigen dir, wo Geld verbrannt wird. Für Kostenkontrolle setzt
du Budgets, Quoten und Kosten-Alerts pro Team, Projekt und Feature-Flag.
Live-Quality kann mit LLM-as-a-Judge, Heuristiken und stichprobenbasierter
Human-in-the-Loop-Prüfung begleitet werden. Drift-Erkennung warnt dich, wenn
Antworten abgleiten, etwa nach Provider-Updates oder Datenänderungen. Ohne
diese Infrastruktur ist jede Optimierung ein Glücksspiel und jeder Ausfall
ein Drama.

Offline-Experimente verhindern, dass dein Produktivsystem zum Labor wird. Du
versionierst Prompts, Chain-Logiken, RAG-Parameter und Tool-Schemata und
testest Varianten systematisch gegen deine Eval-Sets. Eine saubere CI-
Pipeline führt Evals automatisch aus und blockiert Rollouts bei
Qualitätsrückfall. Canary-Deployments und A/B-Tests validieren Effekte in der
Realität, bevor die gesamte Nutzerschaft betroffen ist. In Verbindung mit
Feature-Flags kannst du riskante Änderungen gezielt und reversibel ausrollen.
So verwandelst du LLM-Entwicklung von Alchemie in Ingenieurwesen.

Evals aufsetzen: Use-Case definieren, Gold-Daten kuratieren, Metriken
wählen, Benchmarks implementieren, CI integrieren, Review-Prozess
etablieren.
Monitoring bauen: Tracing, Metriken, Logs, Dashboards, Alerts,
Kostenlimits, Rate-Limits, Fallback-Regeln, Incident-Playbooks.
Kontinuierlich verbessern: Drift erkennen, Ursachen analysieren,
Hypothesen testen, Small-Batch-Rollouts, Regressions verhindern.



Auswahl-Framework: So findest
du die richtige Online-KI für
dein Team
Wähle nie ein Modell, wähle eine Architektur mit Exit-Strategie. Beginne mit
der Problemdefinition, nicht mit dem Logo, und übersetze Anforderungen in
messbare Metriken für Qualität, Latenz, Kosten und Sicherheit. Erstelle eine
Shortlist aus 3–5 Providern, die deine Mindestanforderungen abdecken, etwa
Kontextlänge, Tool-Use, Datenresidenz und Preisbereich. Teste alle Kandidaten
auf deiner Eval-Suite, nicht auf Demo-Prompts, und vergleiche robuste
Kennzahlen unter identischen Parametern. Plane Fallbacks und Multi-Provider-
Routing von Anfang an, damit du bei Incidents, Preissprüngen oder
Qualitätsdrift handlungsfähig bleibst. Und schreibe Policies, wie neue
Modelle oder Versionen in deine Landschaft kommen, sonst wird dein Stack zum
Zoo.

Kostenbetrachtung ist mehrstufig und beginnt auf Token-Ebene, endet aber in
Architekturkosten. Rechne Input- und Output-Token mit realistischen
Promptgrößen, Antworthöhen und Retries, nicht mit Schönwetterzahlen.
Berücksichtige Latenz- und Durchsatzbedarfe, denn Skalierung kostet mehr als
nur Tokenpreise; Queueing, Parallelisierung und Caching machen den
Unterschied. Prüfe Rate Limits, Priorisierungsmodelle und Reservierungen beim
Provider, damit Peak-Lasten nicht zur Lotterie werden. Denke auch an
Personalkosten: Eine API mit reifem SDK, klarer Doku und stabilen Semantiken
spart Monate gegenüber hippen, brüchigen Lösungen. Und dokumentiere deine
Annahmen; Budgetkontrolle ohne Annahmen ist eine Fiktion.

Technischer Zuschnitt entscheidet, ob du morgen noch ruhig schläfst. Prüfe,
ob Structured Outputs stabil sind, ob Function Calling Schema-Treue hält und
ob Validierungsfehler sauber behandelbar sind. Schau dir Observability-
Features an: Request-IDs, korrelierbare Logs, Statusseitenhistorie,
dedizierte Supportkanäle. Verifiziere Sicherheitsmechanismen, Datenflüsse,
Retention-Optionen, BYOK, regionale Endpunkte und Vertragsklarheit. Und
verhandle Off-Ramps: Datenexport, Migrationshilfen, Preisanpassungsklauseln,
Notfallkontakte. Gute Anbieter scheuen das nicht; schlechte schon.

Use-Case klären: Ziel, Risiken, Metriken, Constraints definieren und1.
schriftlich fixieren.
Shortlist bilden: Funktionale Mindestkriterien, Compliance, Preisrahmen,2.
regionale Anforderungen.
Eval-Suite ausrollen: Einheitliche Prompts, Parameter, Messung,3.
Regressionstests.
Architektur planen: Multi-Provider, Fallbacks, Caching, Observability,4.
Kosten-Policies.
Verträge schließen: AVV, SLAs, Datenresidenz, Support, Exit-Strategie,5.
Eskalationspfade.
Rollout steuern: Feature-Flags, Canary, Monitoring, Incident-Playbooks,6.



Postmortems.

Zum Schluss: Welche KI gibt es online ist eine falsche Einzahlfrage in einem
Mehrzahlmarkt. Du brauchst bewusst mehrere Bausteine, die du austauschen
kannst, wenn Anforderungen, Preise oder Qualität sich verschieben. Ein
starker Stack ist modular, beobachtbar, evaluiert und durch Policies
geschützt. So baust du keine Abhängigkeit, sondern einen Wettbewerbsvorteil.
Und du ersparst dir den peinlichen Satz “wir warten gerade auf die Antwort
vom Modell”, wenn die Produktion brennt.

Wenn du bis hierher gelesen hast, hast du verstanden, dass “Welche KI gibt es
online” nur der Anfang ist. Die eigentliche Kunst ist, aus den Bausteinen
einen verlässlichen, sicheren und bezahlbaren Produktionsdienst zu bauen.
Konzentriere dich auf Messbarkeit statt Magie, auf Architektur statt
Anekdoten, auf Prozesse statt Bauchgefühl. Dann lieferst du Ergebnisse, nicht
nur Demos. Willkommen in der Realität der Profis. Willkommen bei 404.


